SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Price Neil P J) srt2:(2020)"

Search: WFRF:(Price Neil P J) > (2020)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Margaryan, Ashot, et al. (author)
  • Population genomics of the Viking world
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 585:7825, s. 390-396
  • Journal article (peer-reviewed)abstract
    • The maritime expansion of Scandinavian populations during the Viking Age (about ad750–1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci—including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response—in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.
  •  
2.
  • Hering, Jenny, et al. (author)
  • Exploring the Active Site of the Antibacterial Target MraY by Modified Tunicamycins.
  • 2020
  • In: ACS chemical biology. - : American Chemical Society (ACS). - 1554-8937 .- 1554-8929. ; 15:11, s. 2885-2895
  • Journal article (peer-reviewed)abstract
    • The alarming growth of antibiotic resistance that is currently ongoing is a serious threat to human health. One of the most promising novel antibiotic targets is MraY (phospho-MurNAc-pentapeptide-transferase), an essential enzyme in bacterial cell wall synthesis. Through recent advances in biochemical research, there is now structural information available for MraY, and for its human homologue GPT (GlcNAc-1-P-transferase), that opens up exciting possibilities for structure-based drug design. The antibiotic compound tunicamycin is a natural product inhibitor of MraY that is also toxic to eukaryotes through its binding to GPT. In this work, we have used tunicamycin and modified versions of tunicamycin as tool compounds to explore the active site of MraY and to gain further insight into what determines inhibitor potency. We have investigated tunicamycin variants where the following motifs have been modified: the length and branching of the tunicamycin fatty acyl chain, the saturation of the fatty acyl chain, the 6″-hydroxyl group of the GlcNAc ring, and the ring structure of the uracil motif. The compounds are analyzed in terms of how potently they bind to MraY, inhibit the activity of the enzyme, and affect the protein thermal stability. Finally, we rationalize these results in the context of the protein structures of MraY and GPT.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view