SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Qiang Y) srt2:(2020-2024)"

Search: WFRF:(Qiang Y) > (2020-2024)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  • Guo, S., et al. (author)
  • Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations
  • 2020
  • In: Physics Letters B. - : ELSEVIER. - 0370-2693 .- 1873-2445. ; 807
  • Journal article (peer-reviewed)abstract
    • Three nearly degenerate pairs of doublet bands are identified in Ba-131. Two of them, with positive-parity, are interpreted as pseudospin-chiral quartet bands. This is the first time that a complete set of chiral doublet bands built on the pseudospin partners pi(d(5/2), g(7/2)) is observed. The chiral bands with opposite parity built on 3-quasiparticle configurations are directly connected by many E1 transitions, without involving an intermediary non-chiral configuration. The observed band structures in Ba-131 have been investigated by using the reflection-asymmetric particle rotor model. The energies and the electromagnetic transition ratios of the three pairs of doublet bands observed in Ba-131 are reproduced and they are interpreted as chiral doublet bands with three-quasiparticle configurations. It is the first time that multiple chiral bands are observed in the presence of enhanced octupole correlations and pseudospin symmetry. 
  •  
4.
  • Arpaia, Riccardo, 1985, et al. (author)
  • Signature of quantum criticality in cuprates by charge density fluctuations
  • 2023
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.
  •  
5.
  • Peng, Y. Y., et al. (author)
  • Doping dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates
  • 2022
  • In: Physical Review B. - 2469-9969 .- 2469-9950. ; 105:11
  • Journal article (peer-reviewed)abstract
    • While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-Tc superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen K edge, we study the EPC in Bi2Sr2CaCu2O8+δ (Bi2212) and Nd1+xBa2-xCu3O7-δ (NBCO) at different doping levels ranging from heavily underdoped (p=0.07) to overdoped (p=0.21). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO chains and the CuO2 planes. Combining the results from the two families, we find the EPC strength decreases with doping at q∥=(-0.25,0) r.l.u., but has a nonmonotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in d-wave pairing.
  •  
6.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
7.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.
  •  
8.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A∗ Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 964:2
  • Journal article (peer-reviewed)abstract
    • In a companion paper, we present the first spatially resolved polarized image of Sagittarius A∗ on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%-28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87∗, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A∗ (equivalent to ≈ 46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow.
  •  
9.
  • Akiyama, Kazunori, et al. (author)
  • The persistent shadow of the supermassive black hole of M 87: I. Observations, calibration, imaging, and analysis*
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Journal article (peer-reviewed)abstract
    • In April 2019, the Event Horizon Telescope (EHT) Collaboration reported the first-ever event-horizon-scale images of a black hole, resolving the central compact radio source in the giant elliptical galaxy M 87. These images reveal a ring with a southerly brightness distribution and a diameter of ∼42 μas, consistent with the predicted size and shape of a shadow produced by the gravitationally lensed emission around a supermassive black hole. These results were obtained as part of the April 2017 EHT observation campaign, using a global very long baseline interferometric radio array operating at a wavelength of 1.3 mm. Here, we present results based on the second EHT observing campaign, taking place in April 2018 with an improved array, wider frequency coverage, and increased bandwidth. In particular, the additional baselines provided by the Greenland telescope improved the coverage of the array. Multiyear EHT observations provide independent snapshots of the horizon-scale emission, allowing us to confirm the persistence, size, and shape of the black hole shadow, and constrain the intrinsic structural variability of the accretion flow. We have confirmed the presence of an asymmetric ring structure, brighter in the southwest, with a median diameter of 43.3-3.1+1.5 μas. The diameter of the 2018 ring is remarkably consistent with the diameter obtained from the previous 2017 observations. On the other hand, the position angle of the brightness asymmetry in 2018 is shifted by about 30 relative to 2017. The perennial persistence of the ring and its diameter robustly support the interpretation that the ring is formed by lensed emission surrounding a Kerr black hole with a mass ∼6.5× 109M. The significant change in the ring brightness asymmetry implies a spin axis that is more consistent with the position angle of the large-scale jet.
  •  
10.
  • Botvinik-Nezer, Rotem, et al. (author)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Journal article (peer-reviewed)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23
Type of publication
journal article (22)
research review (1)
Type of content
peer-reviewed (23)
Author/Editor
Chatterjee, S (14)
Rao, R (14)
Jorstad, S. G. (13)
Krichbaum, T. P. (13)
van Langevelde, H. J ... (13)
Savolainen, T. (13)
show more...
Roy, A. (13)
Marti-Vidal, Ivan, 1 ... (13)
Wielgus, M. (13)
Hada, K. (13)
Lico, R. (13)
Crew, G. (13)
Trippe, S. (13)
Kim, Jae-Young (13)
Akiyama, Kazunori (13)
Alberdi, Antxon (13)
Alef, Walter (13)
Azulay, R. (13)
Baloković, Mislav (13)
Barrett, John (13)
Bintley, Dan (13)
Blackburn, Lindy (13)
Bouman, K. L. (13)
Brissenden, Roger (13)
Britzen, Silke (13)
Broderick, Avery E. (13)
Broguière, D. (13)
Bronzwaer, Thomas (13)
Byun, Do Young (13)
Carlstrom, J. E. (13)
Chael, A. (13)
Chen, Ming Tang (13)
Chen, Yongjun (13)
Cho, I. (13)
Conway, John, 1963 (13)
Cui, Yuzhu (13)
Davelaar, Jordy (13)
Deane, R. P. (13)
Desvignes, Gregory (13)
Doeleman, S. (13)
Eatough, Ralph P. (13)
Fish, V. (13)
Fraga-Encinas, R. (13)
Fromm, Christian M. (13)
Galison, Peter (13)
Gammie, Charles F. (13)
Garcia, Roberto (13)
Gentaz, Olivier (13)
Georgiev, Boris (13)
Goddi, C. (13)
show less...
University
Chalmers University of Technology (16)
Karolinska Institutet (3)
University of Gothenburg (2)
Uppsala University (2)
Stockholm University (2)
Linköping University (2)
show more...
Umeå University (1)
Royal Institute of Technology (1)
Lund University (1)
Stockholm School of Economics (1)
Linnaeus University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (23)
Research subject (UKÄ/SCB)
Natural sciences (19)
Medical and Health Sciences (6)
Engineering and Technology (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view