SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rabalais Nancy N.) "

Search: WFRF:(Rabalais Nancy N.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Breitburg, Denise, et al. (author)
  • Declining oxygen in the global ocean and coastal waters
  • 2018
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 359:6371
  • Research review (peer-reviewed)abstract
    • Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global-and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems.
  •  
2.
  • Conley, Daniel, et al. (author)
  • Hypoxia-Related Processes in the Baltic Sea
  • 2009
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 43:10, s. 3412-3420
  • Journal article (peer-reviewed)abstract
    • Hypoxia, a growing worldwide problem, has been intermittently present in the modern Baltic Sea since its formation ca. 8000 cal. yr BP. However, both the spatial extent and intensity of hypoxia have increased with anthropogenic eutrophication due to nutrient inputs. Physical processes, which control stratification and the renewal of oxygen in bottom waters, are important constraints on the formation and maintenance of hypoxia. Climate controlled inflows of saline water from the North Sea through the Danish Straits is a critical controlling factor governing the spatial extent and duration of hypoxia. Hypoxia regulates the biogeochemical cycles of both phosphorus (P) and nitrogen (N) in the water column and sediments. Significant amounts of P are currently released from sediments, an order of magnitude larger than anthropogenic inputs. The Baltic Sea is unique for coastal marine ecosystems experiencing N losses in hypoxic waters below the halocline. Although benthic communities in the Baltic Sea are naturally constrained by salinity gradients, hypoxia has resulted in habitat loss over vast areas and the elimination of benthic fauna, and has severely disrupted benthic food webs. Nutrient load reductions are needed to reduce the extent, severity, and effects of hypoxia.
  •  
3.
  •  
4.
  • Pitcher, Grant C., et al. (author)
  • System controls of coastal and open ocean oxygen depletion
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 197
  • Research review (peer-reviewed)abstract
    • The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. This paper provides a review of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas and in the coastal environment. Identification of similar and contrasting responses within and across system types and corresponding oxygen regimes is shown to be informative both in understanding and isolating key controlling processes and provides a sound basis for predicting change under anticipated future conditions. Case studies were selected to achieve a balance in system diversity and global coverage. Each case study describes system attributes, including the present-day oxygen environment and known trends in oxygen concentrations over time. Central to each case study is the identification of the physical and biogeochemical processes that determine oxygen concentrations through the tradeoff between ventilation and respiration. Spatial distributions of oxygen and time series of oxygen data provide the opportunity to identify trends in oxygen availability and have allowed various drivers of low oxygen to be distinguished through correlative and causative relationships. Deoxygenation results from a complex interplay of hydrographic and biogeochemical processes and the superposition of these processes, some additive and others subtractive, makes attribution to any particular driver challenging. System-specific models are therefore required to achieve a quantitative understanding of these processes and of the feedbacks between processes at varying scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view