SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rhode W.) "

Search: WFRF:(Rhode W.)

  • Result 1-10 of 206
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • Acharya, B. S., et al. (author)
  • Introducing the CTA concept
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Journal article (other academic/artistic)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
4.
  • Aartsen, M. G., et al. (author)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
5.
  • Abbasi, R., et al. (author)
  • Acceptance Tests of more than 10 000 Photomultiplier Tubes for the multi-PMT Digital Optical Modules of the IceCube Upgrade
  • 2024
  • In: Journal of Instrumentation. - 1748-0221. ; 19:7
  • Journal article (peer-reviewed)abstract
    • More than 10 000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests.
  •  
6.
  • Abbasi, R., et al. (author)
  • Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube
  • 2024
  • In: Physical Review D - Particles, Fields, Gravitation and Cosmology. - 2470-0010 .- 2470-0029. ; 110:2
  • Journal article (peer-reviewed)abstract
    • A measurement of the diffuse astrophysical neutrino spectrum is presented using IceCube data collected from 2011-2022 (10.3 years). We developed novel detection techniques to search for events with a contained vertex and exiting track induced by muon neutrinos undergoing a charged-current interaction. Searching for these starting track events allows us to not only more effectively reject atmospheric muons but also atmospheric neutrino backgrounds in the southern sky, opening a new window to the sub-100 TeV astrophysical neutrino sky. The event selection is constructed using a dynamic starting track veto and machine learning algorithms. We use this data to measure the astrophysical diffuse flux as a single power law flux (SPL) with a best-fit spectral index of γ=2.58-0.09+0.10 and per-flavor normalization of φper-flavorAstro=1.68-0.22+0.19×10-18×GeV-1 cm-2 s-1 sr-1 (at 100 TeV). The sensitive energy range for this dataset is 3-550 TeV under the SPL assumption. This data was also used to measure the flux under a broken power law, however we did not find any evidence of a low energy cutoff.
  •  
7.
  • Abbasi, R., et al. (author)
  • Citizen science for IceCube: Name that Neutrino
  • 2024
  • In: European Physical Journal Plus. - 2190-5444. ; 139:6
  • Journal article (peer-reviewed)abstract
    • Name that Neutrino is a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions. Name that Neutrino obtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for both Name that Neutrino and the deep neural network are discussed.
  •  
8.
  • Abbasi, R., et al. (author)
  • Improved modeling of in-ice particle showers for IceCube event reconstruction
  • 2024
  • In: Journal of Instrumentation. - 1748-0221. ; 19:6
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed.
  •  
9.
  • Abbasi, R., et al. (author)
  • Limits on Neutrino Emission from GRB 221009A from MeV to PeV Using the IceCube Neutrino Observatory
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 946:1
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A-the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV-provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source.
  •  
10.
  • Abbasi, R., et al. (author)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Journal article (peer-reviewed)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 206
Type of publication
journal article (192)
conference paper (12)
research review (1)
book chapter (1)
Type of content
peer-reviewed (203)
other academic/artistic (3)
Author/Editor
Rhode, W. (201)
Schmidt, T. (186)
Karle, A. (182)
Halzen, F. (181)
Spiering, C. (181)
Bai, X. (179)
show more...
Kowalski, M. (179)
Rawlins, K. (179)
Desiati, P. (176)
Madsen, J. (175)
Taboada, I. (175)
Barwick, S. W. (173)
Cowen, D. F. (172)
Hanson, K. (172)
Tilav, S. (172)
Bernardini, E. (170)
DeYoung, T. (170)
Hill, G. C. (169)
Wiebusch, C. H. (169)
Chirkin, D. (166)
Spiczak, G. M. (165)
De Clercq, C. (163)
Gerhardt, L. (163)
Price, P. B. (163)
Resconi, E. (163)
Woschnagg, K. (163)
Goldschmidt, A. (162)
Przybylski, G. T. (161)
Stokstad, R. G. (156)
Nygren, D. R. (155)
Helbing, K. (154)
Hultqvist, K. (153)
Montaruli, T. (153)
Stanev, T. (153)
Bay, R. (152)
Kolanoski, H. (151)
Olivas, A. (151)
Rott, C. (151)
Ryckbosch, D. (151)
Stezelberger, T. (151)
Berley, D. (150)
Blaufuss, E. (150)
Gaisser, T. K. (150)
Hoshina, K. (150)
Karg, T. (150)
Seunarine, S. (150)
Ishihara, A. (149)
Sarkar, S. (149)
Seckel, D. (149)
Wendt, C. (149)
show less...
University
Stockholm University (152)
Uppsala University (150)
Linnaeus University (56)
Chalmers University of Technology (15)
Royal Institute of Technology (6)
Lund University (4)
show more...
University of Gothenburg (2)
Malmö University (1)
show less...
Language
English (206)
Research subject (UKÄ/SCB)
Natural sciences (201)
Engineering and Technology (3)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view