SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ritchie B) srt2:(2020-2024)"

Search: WFRF:(Ritchie B) > (2020-2024)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Ramdas, S., et al. (author)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Journal article (peer-reviewed)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
3.
  •  
4.
  •  
5.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
6.
  • Rajewsky, N., et al. (author)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Journal article (peer-reviewed)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
7.
  •  
8.
  •  
9.
  • Bader, I., et al. (author)
  • Recruitment of pre-dementia participants: main enrollment barriers in a longitudinal amyloid-PET study
  • 2023
  • In: Alzheimer's Research & Therapy. - 1758-9193. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Background The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies.Methods Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests.Results 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (beta = - 0.22, OR = 0.80, p < .05), more prior study visits (beta = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (beta = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X-2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X-2 = 32.34, p < .001).Conclusions The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.
  •  
10.
  • Frisoni, G. B., et al. (author)
  • Dementia prevention in memory clinics: recommendations from the European task force for brain health services
  • 2023
  • In: Lancet Regional Health-Europe. - : Elsevier BV. - 2666-7762. ; 26
  • Journal article (peer-reviewed)abstract
    • Observational population studies indicate that prevention of dementia and cognitive decline is being accomplished, possibly as an unintended result of better vascular prevention and healthier lifestyles. Population aging in the coming decades requires deliberate efforts to further decrease its prevalence and societal burden. Increasing evidence sup-ports the efficacy of preventive interventions on persons with intact cognition and high dementia risk. We report recommendations for the deployment of second-generation memory clinics (Brain Health Services) whose mission is evidence-based and ethical dementia prevention in at-risk individuals. The cornerstone interventions consist of (i) assessment of genetic and potentially modifiable risk factors including brain pathology, and risk stratification, (ii) risk communication with ad-hoc protocols, (iii) risk reduction with multi-domain interventions, and (iv) cognitive enhancement with cognitive and physical training. A roadmap is proposed for concept validation and ensuing clinical deployment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view