SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Roland F.) srt2:(2020-2024)"

Search: WFRF:(Roland F.) > (2020-2024)

  • Result 1-10 of 83
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Jansen, Joachim, 1989-, et al. (author)
  • Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
  •  
5.
  • Lam, K. W.F., et al. (author)
  • GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star
  • 2021
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6572, s. 1271-1275
  • Journal article (peer-reviewed)abstract
    • Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter—close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury’s interior.
  •  
6.
  • Murgas, F., et al. (author)
  • TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Context. The NASA mission TESS is currently doing an all-sky survey from space to detect transiting planets around bright stars. As part of the validation process, the most promising planet candidates need to be confirmed and characterized using follow-up observations. Aims. In this article, our aim is to confirm the planetary nature of the transiting planet candidate TOI-674b using spectroscopic and photometric observations. Methods. We use TESS, Spitzer, ground-based light curves, and HARPS spectrograph radial velocity measurements to establish the physical properties of the transiting exoplanet candidate TOI-674b. We perform a joint fit of the light curves and radial velocity time series to measure the mass, radius, and orbital parameters of the candidate. Results. We confirm and characterize TOI-674b, a low-density super-Neptune transiting a nearby M dwarf. The host star (TIC 158588995, V = 14.2 mag, J = 10.3 mag) is characterized by its M2V spectral type with M = 0.420 ± 0.010 M , R = 0.420 ± 0.013 R , and Teff = 3514 ± 57 K; it is located at a distance d = 46.16 ± 0.03 pc. Combining the available transit light curves plus radial velocity measurements and jointly fitting a circular orbit model, we find an orbital period of 1.977143 ± 3 × 10-6 days, a planetary radius of 5.25 ± 0.17 R , and a mass of 23.6 ± 3.3 M implying a mean density of ρp =0.91 ± 0.15 g cm-3. A non-circular orbit model fit delivers similar planetary mass and radius values within the uncertainties. Given the measured planetary radius and mass, TOI-674b is one of the largest and most massive super-Neptune class planets discovered around an M-type star to date. It is found in the Neptunian desert, and is a promising candidate for atmospheric characterization using the James Webb Space Telescope.
  •  
7.
  • Van Eylen, Vincent, et al. (author)
  • Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:2, s. 2154-2173
  • Journal article (peer-reviewed)abstract
    • We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M = 0.39 M, R = 0.38 R), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the 'radius valley'-a region in the radius-period diagram with relatively few members-which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere.
  •  
8.
  • Keller, P. S., et al. (author)
  • Global CO2 emissions from dry inland waters share common drivers across ecosystems
  • 2020
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle.
  •  
9.
  • Luque, R., et al. (author)
  • A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Journal article (peer-reviewed)abstract
    • We report the discovery and characterization of two transiting planets around the bright M1 V star LP 961-53 (TOI-776, J = 8.5 mag, M = 0.54 ± 0.03 M⊙) detected during Sector 10 observations of the Transiting Exoplanet Survey Satellite (TESS). Combining the TESS photometry with HARPS radial velocities, as well as ground-based follow-up transit observations from the MEarth and LCOGT telescopes, for the inner planet, TOI-776 b, we measured a period of Pb = 8.25 d, a radius of Rb = 1.85 ± 0.13 R⊙, and a mass of Mb = 4.0 ± 0.9 M⊙; and for the outer planet, TOI-776 c, a period of Pc = 15.66 d, a radius of Rc = 2.02 ± 0.14 R⊙, and a mass of Mc = 5.3 ± 1.8 M⊙. The Doppler data shows one additional signal, with a period of ~34 d, associated with the rotational period of the star. The analysis of fifteen years of ground-based photometric monitoring data and the inspection of different spectral line indicators confirm this assumption. The bulk densities of TOI-776 b and c allow for a wide range of possible interior and atmospheric compositions. However, both planets have retained a significant atmosphere, with slightly different envelope mass fractions. Thanks to their location near the radius gap for M dwarfs, we can start to explore the mechanism(s) responsible for the radius valley emergence around low-mass stars as compared to solar-like stars. While a larger sample of well-characterized planets in this parameter space is still needed to draw firm conclusions, we tentatively estimate that the stellar mass below which thermally-driven mass loss is no longer the main formation pathway for sculpting the radius valley is between 0.63 and 0.54 M⊙. Due to the brightness of the star, the TOI-776 system is also an excellent target for the James Webb Space Telescope, providing a remarkable laboratory in which to break the degeneracy in planetary interior models and to test formation and evolution theories of small planets around low-mass stars.
  •  
10.
  • Serrano, L. M., et al. (author)
  • A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system
  • 2022
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:6, s. 736-750
  • Journal article (peer-reviewed)abstract
    • It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 83
Type of publication
journal article (74)
conference paper (4)
research review (2)
Type of content
peer-reviewed (78)
other academic/artistic (2)
Author/Editor
Jenkins, Jon M. (18)
Ricker, George R. (17)
Palle, Enric (13)
Seager, S. (13)
Persson, Carina, 196 ... (12)
Collins, Karen A. (12)
show more...
Csizmadia, Szilard (11)
Fridlund, Malcolm, 1 ... (11)
Dai, Fei (11)
Winn, J. N. (11)
Van Eylen, Vincent (11)
Livingston, J.H. (9)
Cochran, William D. (9)
Latham, D. W. (9)
Narita, Norio (8)
Smith, Alexis M. S. (8)
Luque, R. (8)
Georgieva, Iskra, 19 ... (8)
Stassun, Keivan G. (7)
Gandolfi, D. (7)
Korth, Judith (7)
Murgas, F. (7)
Korth, Judith, 1987 (7)
Serrano, L. M. (7)
Collins, Kevin I. (7)
Lam, K. W.F. (6)
Latham, David W. (6)
Kádár, Roland, 1982 (6)
Gandolfi, Davide (6)
Howell, S.B. (6)
Shporer, Avi (6)
Lam, Kristine W. F. (6)
Nowak, G. (5)
Esposito, M. (5)
Ryan, M (5)
Hirano, T (5)
Santos, N. C. (5)
Redfield, S. (5)
Cabrera, J (5)
Barragán, O. (5)
Grziwa, S. (5)
Hatzes, Artie P. (5)
Guenther, E. W. (5)
Albrecht, Simon (5)
Hatzes, A. (5)
Twicken, J. D. (5)
Goffo, E. (5)
Carleo, Ilaria (5)
Ciardi, D. R. (5)
Hellier, Coel (5)
show less...
University
Chalmers University of Technology (30)
Karolinska Institutet (22)
Lund University (16)
Uppsala University (13)
University of Gothenburg (10)
Stockholm University (8)
show more...
Umeå University (4)
Linköping University (4)
Royal Institute of Technology (3)
Örebro University (3)
Stockholm School of Economics (2)
Luleå University of Technology (1)
Halmstad University (1)
Jönköping University (1)
Mid Sweden University (1)
show less...
Language
English (83)
Research subject (UKÄ/SCB)
Natural sciences (51)
Medical and Health Sciences (22)
Engineering and Technology (16)
Social Sciences (3)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view