SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Romero Mendoza M) srt2:(2015-2019)"

Search: WFRF:(Romero Mendoza M) > (2015-2019)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2015
  • Journal article (peer-reviewed)
  •  
2.
  • Ruilope, LM, et al. (author)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • In: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Journal article (peer-reviewed)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
3.
  • Diakaki, M., et al. (author)
  • Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN -€“ n_TOF
  • 2016
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Conference paper (peer-reviewed)abstract
    • The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.
  •  
4.
  • Paradela, C., et al. (author)
  • High-accuracy determination of the 238U/235U fission cross section ratio up to ~1 GeV at n_TOF at CERN
  • 2015
  • In: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 91, s. 024602-
  • Journal article (peer-reviewed)abstract
    • The U238 to U235 fission cross section ratio has been determined at n_TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3–4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.
  •  
5.
  •  
6.
  • Praena, J., et al. (author)
  • Preparation and characterization of 33S samples for 33S(n,alpha)30Si cross-section measurements at the n_TOF facility at CERN
  • 2018
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 890, s. 142-147
  • Journal article (peer-reviewed)abstract
    • Thin 33S samples for the study of the 33S(n,alpha)30Si cross-section at the n_TOF facility at CERN were made by thermal evaporation of 33S powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of 33S has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation.
  •  
7.
  • Leal-Cidoncha, E., et al. (author)
  • Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility
  • 2016
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Conference paper (peer-reviewed)abstract
    • Neutron-induced fission cross sections of U-238 and U-235 are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection efficiency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new U-235(n,f) and U-238(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.
  •  
8.
  • Leal-Cidoncha, E., et al. (author)
  • High accuracy 234U(n,f) cross section in the resonance energy region
  • 2017
  • In: ND 2016. - Les Ulis : EDP Sciences. - 9782759890200
  • Conference paper (peer-reviewed)abstract
    • New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view