SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rosén Sara) srt2:(2005-2009)"

Search: WFRF:(Rosén Sara) > (2005-2009)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alerstam, Thomas, et al. (author)
  • A polar system of intercontinental bird migration
  • 2007
  • In: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954. ; 274:1625, s. 2523-2530
  • Journal article (peer-reviewed)abstract
    • Studies of birdmigration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive birdmigration in the whole Beringia range from latitude 64 degrees N in Bering Strait up to latitude 75 degrees N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian-American birdmigration system in a wide Arctic sector between longitudes 1108 E and 130 degrees W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3-5 km). Great circle orientation provided a significantly better fit with observed flight directions at 20 different sites and areas than constant geographical compass orientation. The long flights over the sea spanned 40-80 degrees of longitude, corresponding to distances and durations of 1400-2600 km and 26-48 hours, respectively. The birds continued from this eastward migration system over the Arctic Ocean into several different flyway systems at the American continents and the Pacific Ocean. Minimization of distances between tundra breeding sectors and northerly stopover sites, in combination with the Beringia glacial refugium and colonization history, seemed to be important for the evolution of this major polar bird migration system.
  •  
2.
  •  
3.
  • Alerstam, Thomas, et al. (author)
  • Great-Circle Migration Of Arctic Passerines
  • 2008
  • In: The Auk. - : Oxford University Press (OUP). - 0004-8038 .- 1938-4254. ; 125:4, s. 831-838
  • Journal article (peer-reviewed)abstract
    • Birds can save distance and time on their migratory journeys by following great circles rather than rhumblines, but great-circle routes require more complex orientation with changing courses. Flight directions at different places along the route and in relation to the destination can be used to test whether birds migrate along great circles or rhumblines. Such data have indicated great-circle migration among shorebirds at high latitudes, but no critical tests have been made for passerines. Using tracking radar on board the icebreaker Oden in August 2005, we recorded westerly flight directions of passerine migrants over the Chukchi Sea. The main sector of migratory directions was 237-311 degrees centered oil a mean heading direction of 274 degrees. The most likely species to participate in this westward trans-Beringia migration, mainly departing from Alaska, were Eastern Yellow Wagtail (Motacilla Ischutschensis), Arctic Warbler (Phylloscopus borealis kennicotti), Northern Wheatear (Oenanthe oenanthe), and Bluethroat (Luscinia svecica); all except the Bluethroat were recorded from the ship. Observed flight directions agreed with predicted great-circle courses but not with rhumbline courses for three of these four species with winter quarters in Southeast Asia; no definite conclusion could be drawn for the Northern Wheatear (wintering in East Africa). These results support great-circle migration among passerines traveling between Alaska and Old World winter quarters, though the long-distance precision and orientation mechanisms are Still unknown. The relative importance of different evolutionary causes-such as circumvention of geographic barriers, retracing of ancient colonization ways, or distance reduction by great-circle migration-to complex bird migration routes with changing courses remains to be understood. Received 24 August 2007, accepted 6 March 2008.
  •  
4.
  • Hedenström, Anders, et al. (author)
  • Radar Observations of Arctic Bird Migration in the Beringia Region
  • 2009
  • In: Arctic. - 0004-0843. ; 62:1, s. 25-37
  • Journal article (peer-reviewed)abstract
    • Bird migration was recorded by tracking radar and visual observations in the Beringia region. The data were subdivided into seven areas extending from north of Wrangel Island southeastward toward the Bering Strait and then northwestward off the coast of Alaska to Point Barrow. The studies, which took place during a ship-based expedition between 30 July and 19 August 2005, recorded a total of 557 tracks (average duration 120 seconds) of bird flocks or individuals on post-breeding migration. The dominant eastward-flying flocks were likely composed of shorebirds on their way from breeding areas in central or eastern Siberia to intermediate stopovers and final destinations in North and South America. The courses were more southerly into the Bering Strait, possibly because of topographical influence. At two areas, the Chukchi Sea and Koluchinskaya Bay, there was also a westward component of migrants. At the Chukchi Sea these were almost certainly passerine birds migrating from Alaska to wintering areas in Asia and Africa, while at Koluchinskaya Bay, king ciders on molt migration could represent an important part of the westward component. The overall mean altitude of flights was 1157 m, and flight altitude was positively correlated with latitude. The mean ground speed was 15.9 m/s and the mean airspeed was 14.1 m/s, indicating that on average the birds were experiencing a small tail wind component. The airspeed was a function of the tail wind component and the vertical speed; altitude and the side wind component did not contribute significantly to variation in airspeed in this data set. Comparing these results with similar data obtained from Siberia and Canada, we concluded that Beringia is a migration hotspot where intense bird migration crosses between Asia and Alaska in both directions.
  •  
5.
  • Mårtensson, Ulrika, et al. (author)
  • Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.
  • 2009
  • In: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 150:2, s. 687-98
  • Journal article (peer-reviewed)abstract
    • In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view