SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ruocco G.) srt2:(2020-2023)"

Search: WFRF:(Ruocco G.) > (2020-2023)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Apponi, A., et al. (author)
  • Heisenberg's uncertainty principle in the PTOLEMY project : A theory update
  • 2022
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 106:5
  • Journal article (peer-reviewed)abstract
    • We discuss the consequences of the quantum uncertainty on the spectrum of the electron emitted by the beta-processes of a tritium atom bound to a graphene sheet. We analyze quantitatively the issue recently raised by Cheipesh, Cheianov, and Boyarsky [Phys. Rev. D 104, 116004 (2021)], and discuss the relevant timescales and the degrees of freedom that can contribute to the intrinsic spread in the electron energy. We perform careful calculations of the potential between tritium and graphene with different coverages and geometries. With this at hand, we propose possible avenues to mitigate the effect of the quantum uncertainty.
  •  
2.
  • Apponi, A., et al. (author)
  • Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing Ltd. - 1748-0221. ; 17:5
  • Journal article (peer-reviewed)abstract
    • The PTOLEMY transverse drift filter is a new concept to enable precision analysis of the energy spectrum of electrons near the tritium beta-decay endpoint. This paper details the implementation and optimization methods for successful operation of the filter for electrons with a known pitch angle. We present the first demonstrator that produces the required magnetic field properties with an iron return-flux magnet. Two methods for the setting of filter electrode voltages are detailed. The challenges of low-energy electron transport in cases of low field are discussed, such as the growth of the cyclotron radius with decreasing magnetic field, which puts a ceiling on filter performance relative to fixed filter dimensions. Additionally, low pitch angle trajectories are dominated by motion parallel to the magnetic field lines and introduce non-adiabatic conditions and curvature drift. To minimize these effects and maximize electron acceptance into the filter, we present a three-potential-well design to simultaneously drain the parallel and transverse kinetic energies throughout the length of the filter. These optimizations are shown, in simulation, to achieve low-energy electron transport from a 1 T iron core (or 3 T superconducting) starting field with initial kinetic energy of 18.6 keV drained to < 10 eV (< 1 eV) in about 80 cm. This result for low field operation paves the way for the first demonstrator of the PTOLEMY spectrometer for measurement of electrons near the tritium endpoint to be constructed at the Gran Sasso National Laboratory (LNGS) in Italy.
  •  
3.
  •  
4.
  • Sardu, C, et al. (author)
  • Endothelial Dysfunction Drives CRTd Outcome at 1-Year Follow-Up: A Novel Role as Biomarker for miR-130a-5p
  • 2023
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 24:2
  • Journal article (peer-reviewed)abstract
    • Endothelial dysfunction (ED) causes worse prognoses in heart failure (HF) patients treated with cardiac resynchronization therapy (CRTd). ED triggers the downregulation of microRNA-130 (miR-130a-5p), which targets endothelin-1 (ET-1). Thus, we evaluated ED and the response to CRTd by assessing miR-130a-5p and ET-1 serum levels. We designed a prospective multi-center study with a 1-year follow-up to evaluate ED, ET-1, and miR-130a-5p in CRTd patients with ED (ED-CRTd) vs. patients without ED (NED-CRTd). Clinical outcomes were CRTd response, HF hospitalization, cardiac death, and all-cause death. At 1-year follow-up, NED-CRTd (n = 541) vs. ED-CRTd (n = 326) patients showed better clinical statuses, lower serum values of B type natriuretic peptide (BNP: 266.25 ± 10.8 vs. 297.43 ± 16.22 pg/mL; p < 0.05) and ET-1 (4.57 ± 0.17 vs. 5.41 ± 0.24 pmol/L; p < 0.05), and higher values of miR-130a-5p (0.51 ± 0.029 vs. 0.41 ± 0.034 A.U; p < 0.05). Compared with NED-CRTd patients, ED-CRTd patients were less likely to be CRTd responders (189 (58%) vs. 380 (70.2%); p < 0.05) and had higher rates of HF hospitalization (115 (35.3%) vs. 154 (28.5%); p < 0.05) and cardiac deaths (30 (9.2%) vs. 21 (3.9%); p < 0.05). Higher miR-130a-5p levels (HR 1.490, CI 95% [1.014–2.188]) significantly predicted CRTd response; the presence of hypertension (HR 0.818, CI 95% [0.669–0.999]), and displaying higher levels of ET-1 (HR 0.859, CI 98% [0.839–0.979]), lymphocytes (HR 0.820, CI 95% [0.758–0.987]), LVEF (HR 0.876, CI 95% [0.760–0.992]), and ED (HR 0.751, CI 95% [0.624–0.905]) predicted CRTd non-response. Higher serum miR-130a-5p levels (HR 0.332, CI 95% [0.347–0.804]) and use of ARNI (HR 0.319, CI 95% [0.310–0.572]) predicted lower risk of HF hospitalization, whereas hypertension (HR 1.818, CI 95% [1.720–2.907]), higher BNP levels (HR 1.210, CI 95% [1.000–1.401]), and presence of ED (HR 1.905, CI 95% [1.238–2.241]) predicted a higher risk of HF hospitalization. Hence, serum miR-130a-5p could identify different stages of ED and independently predict CRTd response, therefore representing a novel prognostic HF biomarker.
  •  
5.
  • Izzo, M. G., et al. (author)
  • Rayleigh scattering and disorder-induced mixing of polarizations in amorphous solids at the nanoscale: 1-octyl-3-methylimidazolium chloride glass
  • 2020
  • In: Physical Review B. - 2469-9969 .- 2469-9950. ; 102:21
  • Journal article (peer-reviewed)abstract
    • Acousticlike excitations in topologically disordered media at mesocale/nanoscale present anomalous features with respect to the Debye's theory. The so-called Rayleigh scattering manifests in a strong increase of the attenuation of the acousticlike excitations and a softening of the phase velocity with respect to its continuum limit value. Mean field models developed in the random media theory framework can successfully predict the occurrence, at the proper length scale, of Rayleigh scattering. The overall attenuation in the Rayleigh region is, however, underestimated. In the framework of random media theory we developed an analytical model, which permits a quantitative description of the acousticlike excitations in topological glasses in the whole first pseudo-Brillouin zone. The underestimation of the Rayleigh scattering is avoided and, importantly, the model allows to account also for the polarization properties of the acousticlike excitations. In a three-dimensional medium an acoustic wave is characterized by its phase velocity, intensity, and polarization. Rayleigh scattering emphasizes how the topological disorder affects the first two properties. The topological disorder is, however, expected to influence also the third one. In common with the Rayleigh scattering, hallmarks possibly related to the mixing of polarizations have been traced in different classes of amorphous solids at nanoscale. The quantitative theoretical approach developed permits to demonstrate how the mixing of polarizations generates a distinctive feature in the dynamic structure factor of amorphous solids. The modeling capability of the proposed mean field theory is tested on glassy 1-octyl-3-methylimidazolium chloride, whose spatial distribution of the elastic moduli is well assessed and can be experimentally characterized. Contrast between theoretical and experimental features for the selected glass reveals an excellent agreement. The mean field approach we present retains a certain degree of generality and can be possibly extended to different stochastic media or different wave fields.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view