SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ruscher Karsten) srt2:(2015-2019)"

Search: WFRF:(Ruscher Karsten) > (2015-2019)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Christensen, Jakob Hakon, et al. (author)
  • Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury.
  • 2015
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Journal article (peer-reviewed)abstract
    • Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.
  •  
2.
  • Costa, João T., et al. (author)
  • Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death
  • 2016
  • In: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 53:6, s. 3513-3527
  • Journal article (peer-reviewed)abstract
    • GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the central nervous system, and changes in GABAergic neurotransmission modulate the activity of neuronal networks. Gephyrin is a scaffold protein responsible for the traffic and synaptic anchoring of GABAA receptors (GABAAR); therefore, changes in gephyrin expression and oligomerization may affect the activity of GABAergic synapses. In this work, we investigated the changes in gephyrin protein levels during brain ischemia and in excitotoxic conditions, which may affect synaptic clustering of GABAAR. We found that gephyrin is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, as well as after intrahippocampal injection of kainate, giving rise to a stable cleavage product. Gephyrin cleavage was also observed in cultured hippocampal neurons subjected to transient oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, and after transient middle cerebral artery occlusion (MCAO) in mice, a model of focal brain ischemia. Furthermore, a truncated form of gephyrin decreased the synaptic clustering of the protein, reduced the synaptic pool of GABAAR containing γ2 subunits and upregulated OGD-induced cell death in hippocampal cultures. Our results show that excitotoxicity and brain ischemia downregulate full-length gephyrin with a concomitant generation of truncated products, which affect synaptic clustering of GABAAR and cell death.
  •  
3.
  • Ejlerskov, Patrick, et al. (author)
  • Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia.
  • 2015
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 163:2, s. 324-339
  • Journal article (peer-reviewed)abstract
    • Neurodegenerative diseases have been linked to inflammation, but whether altered immunomodulation plays a causative role in neurodegeneration is not clear. We show that lack of cytokine interferon-β (IFN-β) signaling causes spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused defects in neuronal autophagy prior to α-synucleinopathy, which was associated with accumulation of senescent mitochondria. Recombinant IFN-β promoted neurite growth and branching, autophagy flux, and α-synuclein degradation in neurons. In addition, lentiviral IFN-β overexpression prevented dopaminergic neuron loss in a familial Parkinson's disease model. These results indicate a protective role for IFN-β in neuronal homeostasis and validate Ifnb mutant mice as a model for sporadic Lewy body and Parkinson's disease dementia.
  •  
4.
  • Flygt, Johanna, et al. (author)
  • Neutralization of Interleukin-1 beta following Diffuse Traumatic Brain Injury in the Mouse Attenuates the Loss of Mature Oligodendrocytes
  • 2018
  • In: Journal of Neurotrauma. - : MARY ANN LIEBERT, INC. - 0897-7151 .- 1557-9042. ; 35:23, s. 2837-2849
  • Journal article (peer-reviewed)abstract
    • Traumatic brain injury (TBI) commonly results in injury to the components of the white matter tracts, causing post-injury cognitive deficits. The myelin-producing oligodendrocytes (OLs) are vulnerable to TBI, although may potentially be replaced by proliferating oligodendrocyte progenitor cells (OPCs). The cytokine interleukin-1 beta (IL-1 beta) is a key mediator of the complex inflammatory response, and when neutralized in experimental TBI, behavioral outcome was improved. To evaluate the role of IL-1 beta on oligodendrocyte cell death and OPC proliferation, 116 adult male mice subjected to sham injury or the central fluid percussion injury (cFPI) model of traumatic axonal injury, were analyzed at two, seven, and 14 days post-injury. At 30 min post-injury, mice were randomly administered an IL-1 beta neutralizing or a control antibody. OPC proliferation (5-ethynyl 2 '- deoxyuridine (EdU)/Olig2 co-labeling) and mature oligodendrocyte cell loss was evaluated in injured white matter tracts. Microglia/macrophages immunohistochemistry and ramification using Sholl analysis were also evaluated. Neutralizing IL-1 beta resulted in attenuated cell death, indicated by cleaved caspase-3 expression, and attenuated loss of mature OLs from two to seven days post-injury in brain-injured animals. IL-1 beta neutralization also attenuated the early, two day post-injury increase of microglia/macrophage immunoreactivity and altered their ramification. The proliferation of OPCs in brain-injured animals was not altered, however. Our data suggest that IL-1 beta is involved in the TBI-induced loss of OLs and early microglia/macrophage activation, although not the OPC proliferation. Attenuated oligodendrocyte cell loss may contribute to the improved behavioral outcome observed by IL-1 beta neutralization in this mouse model of diffuse TBI.
  •  
5.
  • Hakon, Jakob, et al. (author)
  • Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke
  • 2018
  • In: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 17, s. 717-730
  • Journal article (peer-reviewed)abstract
    • Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC) within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV)-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE) enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD) or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor. Compared to mice housed in STD cages, EE exposure lead to increased RS-FC between posterior secondary motor regions and contralesional posterior parietal and retrosplenial regions. The increased regional RS-FC observed in EE mice after stroke was significantly correlated with decreased PV-immunoreactivity in the contralesional posterior motor region. In conclusion, experimental stroke and subsequent housing in EE induces dynamic changes in RS-FC in the mouse brain. Multisensory stimulation associated with EE enhances RS-FC among distinct brain regions relevant for recovery of sensorimotor function and controlled movements that may involve PV/GABA interneurons. Our results indicate that targeting neural circuitry involving spared motor regions across hemispheres by neuromodulation and multimodal sensory stimulation could improve rehabilitation after stroke.
  •  
6.
  • Markus, Tina, et al. (author)
  • Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation
  • 2018
  • In: BMC Neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. Results: Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen-glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor Κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. Conclusions: Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain.
  •  
7.
  • Quattromani, Miriana Jlenia, et al. (author)
  • Extracellular Matrix Modulation Is Driven by Experience-Dependent Plasticity During Stroke Recovery
  • 2018
  • In: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 55:3, s. 2196-2213
  • Journal article (peer-reviewed)abstract
    • Following stroke, complete cellular death in the ischemic brain area may ensue, with remaining brain areas undergoing tissue remodelling to various degrees. Experience-dependent brain plasticity exerted through an enriched environment (EE) promotes remodelling after central nervous system injury, such as stroke. Post-stroke tissue reorganization is modulated by growth inhibitory molecules differentially expressed within the ischemic hemisphere, like chondroitin sulfate proteoglycans found in perineuronal nets (PNNs). PNNs in the neocortex predominantly enwrap parvalbumin-containing GABAergic (PV/GABA) neurons, important in sensori-information processing. Here, we investigate how extracellular matrix (ECM) proteases and their inhibitors may participate in the regulation of PNN integrity during stroke recovery. Rats were subjected to photothrombotic stroke in the motor cortex, and functional deficits were assessed at 7 days of recovery. Sham and stroked rats were housed in either standard or EE conditions for 5 days, and infarct volumes were calculated. PNNs were visualized by immunohistochemistry and counted in the somatosensory cortex of both hemispheres. mRNA expression levels of ECM proteases and protease inhibitors were assessed by RT-qPCR and their activity analyzed by gel zymography. PNNs and protease activity were also studied in brains from stroke patients where similar results were observed. EE starting 2 days after stroke and continuing for 5 days stimulated behavioral recovery of limb-placement ability without affecting infarct size. EE promoted a decrease of PNNs around PV/GABA neurons and a concomitant modulation of the proteolytic activity and mRNA expression of ECM proteases and protease inhibitors in the somatosensory cortex. This study provides molecular targets for novel therapies that could support rehabilitation of stroke patients.
  •  
8.
  • Ruscher, Karsten, et al. (author)
  • Housing in an enriched environment : A tool to study functional recovery after experimental stroke
  • 2016. - 2nd
  • In: Rodent Models of Stroke. - New York, NY : Springer New York. - 1940-6045 .- 0893-2336. - 9781493956180 - 9781493956203 ; 120, s. 85-92
  • Book chapter (peer-reviewed)abstract
    • Physical therapy and social interactions between the stroke patient and health-care professionals or relatives facilitate the process of recovery and promote improvement of lost neurological function after stroke. These observations can be mimicked in an experimental setting by multimodal stimulation provided in the concept of enriched environment. The enriched environment is a housing condition for rodents combining social interactions and sensorimotor stimulation that improves lost neurological function without affecting the extent of brain damage after experimental stroke. This chapter deals with the concept of enriched housing and about performing studies using enriched environment as tool to investigate mechanisms of recovery after brain injury.
  •  
9.
  • Ruscher, Karsten, et al. (author)
  • The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration.
  • 2015
  • In: Journal of Pharmacological Sciences. - : Elsevier BV. - 1347-8648 .- 1347-8613. ; 127:1, s. 30-35
  • Research review (peer-reviewed)abstract
    • The sigma-1 receptor (Sig-1R) is a single 25 kD polypeptide and a chaperone protein immersed in lipid rafts of the endoplasmic reticulum (ER) where it interacts with mitochondria at the mitochondria-associated ER membrane domain (MAM). Upon activation, the Sig-1R binds to the inositol trisphosphate receptor (IP3R), and modulates cellular calcium (Ca(2+)) homeostasis. Also, the activated Sig-1R modulates plasma membrane receptor and ion channel functions, and may regulate cellular excitability. Further, the Sig-1R promotes trafficking of lipids and proteins essential for neurotransmission, cell growth and motility. Activation of the Sig-1R provides neuroprotection and is neurorestorative in cellular and animal models of neurodegenerative diseases and brain ischaemia. Neuroprotection appears to be due to inhibition of cellular Ca(2+) toxicity and/or inflammation, and neurorestoration may include balancing abberant neurotransmission or stimulation of synaptogenesis, thus remodelling brain connectivity. Single nucleotide polymorphisms and mutations of the SIGMAR1 gene worsen outcome in Alzheimer's disease and myotrophic lateral sclerosis supporting a role of Sig-1R in neurodegenerative disease. The combined neuroprotective and neurorestorative actions of the Sig-1R, provide a broad therapeutic time window of Sig-1R agonists. The Sig-1R is therefore a strong therapeutic target for the development of new treatments for neurodegenerative diseases and stroke.
  •  
10.
  • Saraiva, Cláudia, et al. (author)
  • MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo
  • 2018
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:3
  • Journal article (peer-reviewed)abstract
    • There is a high quest for novel therapeutic strategies to enhance recovery after stroke. MicroRNA-124 (miR-124) has been described as neuroprotective and anti-inflammatory molecule. Moreover, miR-124 is a well described enhancer of adult neurogenesis that could offer potentially beneficial effects. Herein, we used miR-124-loaded nanoparticles (miR-124 NPs) to evaluate their therapeutic potential in an in vitro and in vivo model of stroke. For that, neuroprotective and neurogenic responses were assessed in an in vitro model of stroke. Here, we found that miR-124 NPs decreased cell death and improved neuronal differentiation of subventricular zone (SVZ) neural stem cell cultures after oxygen and glucose deprivation. In contrast, intravenous injection of miR-124 NPs immediately after permanent focal ischemia induced by photothrombosis (PT) did not provide a better neurological outcome. In addition, treatment did not affect the number of 5-bromo-2’-deoxyuridine (BrdU)- and doublecortin/BrdU- positive cells in the SVZ at the study endpoint of 14 days after PT. Likewise, the ischemic insult did not affect the numbers of neuronal progenitors in the SVZ. However, in PT mice miR-124 NPs were able to specifically augment interleukin-6 levels at day 2 post-stroke. Furthermore, we also showed that NPs reached the brain parenchyma and were internalized by brain resident cells. Although, promising in vitro data could not be verified in vivo as miR-124 NPs treatment did not improve functional outcome nor presented beneficial actions on neurogenesis or post-stroke inflammation, we showed that our NP formulation can be a safe alternative for drug delivery into the brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view