SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sahlgren C.) srt2:(2020-2022)"

Search: WFRF:(Sahlgren C.) > (2020-2022)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Zhang, SB, et al. (author)
  • GIT1 protects against breast cancer growth through negative regulation of Notch
  • 2022
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 1537-
  • Journal article (peer-reviewed)abstract
    • Hyperactive Notch signalling is frequently observed in breast cancer and correlates with poor prognosis. However, relatively few mutations in the core Notch signalling pathway have been identified in breast cancer, suggesting that as yet unknown mechanisms increase Notch activity. Here we show that increased expression levels of GIT1 correlate with high relapse-free survival in oestrogen receptor-negative (ER(-)) breast cancer patients and that GIT1 mediates negative regulation of Notch. GIT1 knockdown in ER(-) breast tumour cells increased signalling downstream of Notch and activity of aldehyde dehydrogenase, a predictor of poor clinical outcome. GIT1 interacts with the Notch intracellular domain (ICD) and influences signalling by inhibiting the cytoplasm-to-nucleus transport of the Notch ICD. In xenograft experiments, overexpression of GIT1 in ER(-) cells prevented or reduced Notch-driven tumour formation. These results identify GIT1 as a modulator of Notch signalling and a guardian against breast cancer growth.
  •  
4.
  •  
5.
  •  
6.
  • Niemelä, E., et al. (author)
  • Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer
  • 2020
  • In: European journal of pharmaceutics and biopharmaceutics. - : ELSEVIER. - 0939-6411 .- 1873-3441. ; 148, s. 1-9
  • Journal article (peer-reviewed)abstract
    • Metastatic tumors are the main cause of cancer-related death, as the invading cancer cells disrupt normal functions of distant organs and are nearly impossible to eradicate by traditional cancer therapeutics. This is of special concern when the cancer has created multiple metastases and extensive surgery would be too dangerous to execute. Therefore, combination chemotherapy is often the selected treatment form. However, drug cocktails often have severe adverse effects on healthy cells, whereby the development of targeted drug delivery could minimize side-effects of drugs and increase the efficacy of the combination therapy. In this study, we utilized the folate antagonist methotrexate (MTX) as targeting ligand conjugated onto mesoporous silica nanoparticles (MSNs) for selective eradication of folate receptor-expressing invasive thyroid cancer cells. The MSNs was subsequently loaded with the drug fingolimod (FTY720), which has previously been shown to efficiently inhibit proliferation and invasion of aggressive thyroid cancer cells. To assess the efficiency of our carrier system, comprehensive in vitro methods were employed; including flow cytometry, confocal microscopy, viability assays, invasion assay, and label-free imaging techniques. The in vitro results show that MTX-conjugated and FTY720-loaded MSNs potently attenuated both the proliferation and invasion of the cancerous thyroid cells while keeping the off-target effects in normal thyroid cells reasonably low. For a more physiologically relevant in vivo approach we utilized the chick chorioallantoic membrane (CAM) assay, showing decreased invasive behavior of the thyroid derived xenografts and an increased necrotic phenotype compared to tumors that received the free drug cocktail. Thus, the developed multidrug-loaded MSNs effectively induced apoptosis and immobilization of invasive thyroid cancer cells, and could potentially be used as a carrier system for targeted drug delivery for the treatment of diverse forms of aggressive cancers that expresses folate receptors.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view