SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sandborg Michael) srt2:(2005-2009)"

Search: WFRF:(Sandborg Michael) > (2005-2009)

  • Result 1-10 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Malusek, Alexandr, 1968- (author)
  • Calculation of scatter in cone beam CT : Steps towards a virtual tomograph
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Scattered photons—shortly scatter—are generated by interaction processes when photon beams interact with matter. In diagnostic radiology, they deteriorate image quality since they add an undesirable signal that lowers the contrast in projection radiography and causes cupping and streak artefacts in computed tomography (CT). Scatter is one of the most detrimental factors in cone beam CT owing to irradiation geometries using wide beams. It cannot be fully eliminated, nevertheless its amount can be lowered via scatter reduction techniques (air gaps, antiscatter grids, collimators) and its effect on medical images can be suppressed via scatter correction algorithms.Aim: Develop a tool—a virtual tomograph—that simulates projections and performs image reconstructions similarly to a real CT scanner. Use this tool to evaluate the effect of scatter on projections and reconstructed images in cone beam CT. Propose improvements in CT scanner design and image reconstruction algorithms.Methods: A software toolkit (CTmod) based on the application development framework ROOT was written to simulate primary and scatter projections using analytic and Monte Carlo methods, respectively. It was used to calculate the amount of scatter in cone beam CT for anthropomorphic voxel phantoms and water cylinders. Configurations with and without bowtie filters, antiscatter grids, and beam hardening corrections were investigated. Filtered back-projection was used to reconstruct images. Automatic threshold segmentation of volumetric CT data of anthropomorphic phantoms with known tissue compositions was tested to evaluate its usability in an iterative image reconstruction algorithm capable of performing scatter correction.Results: It was found that computer speed was the limiting factor for the deployment of this method in clinical CT scanners. It took several hours to calculate a single projection depending on the complexity of the geometry, number of simulated detector elements, and statistical precision. Data calculated using the CTmod code confirmed the already known facts that the amount of scatter is almost linearly proportional to the beam width, the scatter-to-primary ratio (SPR) can be larger than 1 for body-size objects, and bowtie filters can decrease the SPR in certain regions of projections. Ideal antiscatter grids significantly lowered the amount of scatter. The beneficial effect of classical antiscatter grids in cone beam CT with flat panel imagers was not confirmed by other researchers nevertheless new grid designs are still being tested. A simple formula estimating the effect of scatter on the quality of reconstructed images was suggested and tested.Conclusions: It was shown that computer simulations could calculate the amount of scatter in diagnostic radiology. The Monte Carlo method was too slow for a routine use in contemporary clinical practice nevertheless it could be used to optimize CT scanner design and, with some enhancements, it could become a part of an image reconstruction algorithm that performs scatter correction.
  •  
2.
  • Dance, D, et al. (author)
  • Breast dosimetry using high-resolution voxel phantoms
  • 2005
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 114:1-3, s. 359-363
  • Journal article (peer-reviewed)abstract
    • A computer model of X-ray mammography has been developed, which uses quasi-realistic high-resolution voxel phantoms to simulate the breast. The phantoms have 400 μm voxels and simulate the three-dimensional distributions of adipose and fibroglandular tissues, Cooper's ligaments, ducts and skin and allow the estimation of dose to individual tissues. Calculations of the incident air kerma to mean glandular dose conversion factor, g, were made using a Mo/Mo spectrum at 28 kV for eight phantoms in the thickness range 40-80 mm and of varying glandularity. The values differed from standard tabulations used for breast dosimetry by up to 43%, because of the different spatial distribution of glandular tissue within the breast. To study this further, additional voxel phantoms were constructed, which gave variations of between 9 and 59% compared with standard values. For accurate breast dosimetry, it is therefore very important to take the distribution of glandular tissues into account. © The Author 2005. Published by Oxford University Press. All rights reserved.
  •  
3.
  • Gårdestig, Magnus, 1973-, et al. (author)
  • Estimations of effective dose in X-ray examinations derived from information stored in PACS
  • 2005
  • In: Radiological Protection in Transition. - Stockholm : Statens Strålskyddsinstitut. ; , s. 175-178
  • Conference paper (other academic/artistic)abstract
    • Information about each X-ray examination, in a modern digitized X-ray department is generated and stored in a PACS. Appropriate conversion factors, e.g. E/DAP, can be applied to separate projections and summed to the total effective dose for each examination. The objectives of the work were (i) to investigate the accuracy and precision in the calculated effective dose (ii) to identify data for registration of (1) patient dose, (2) exposure data, and (3) patient information (iii) to make it possible to derive dose statistics on patient level for documentation of diagnostic standard doses, optimizations, constancy checks, and future epidemiological studies. The effective doses were calculated using Monte Carlo based computer programs or by using tabulations. Conversion factors were calculated for different levels of information and the individual effective dose was compared to the most precise estimation. The results suggest that the accuracy in the estimations of effective dose increases by added information about the patient (gender, size) and how the examination was performed.
  •  
4.
  • Helmrot, Ebba, et al. (author)
  • Estimation of the dose to the unborn child at diagnostic X-ray examinations based on data registrerad in RIS/PACS
  • 2007
  • In: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 17:1, s. 205-209
  • Journal article (peer-reviewed)abstract
    • The aim of this work was to determine mean absorbed doses to the unborn child in common conventional X-ray and computed tomography (CT) examinations and to find an approach for estimating foetal dose based on data registered in the Radiological Information System/Picture Archive and Communication System (RIS/PACS). The kerma-area product (KAP) and CT dose index (CTDIvol) in common examinations were registered using a human-shaped female dosimetry phantom. Foetal doses, Df, were measured using thermoluminescent dosimeters placed inside the phantom and compared with calculated values. Measured foetal doses were given in relation to the KAP and the CTDIvol values, respectively. Conversion factor Df/KAP varies between 0.01 and 3.8 mGy/Gycm2, depending on primary beam position, foetus age and beam quality (tube voltage and filtration). Conversion factors Df/CTDIvol are in the range 0.02 – 1.2 mGy/mGy, in which the foetus is outside or within the primary beam. We conclude that dose conversion factors based on KAP or CTDIvol values automatically generated by the RIS/PACS system can be used for rapid estimations of foetal dose for common examination techniques.
  •  
5.
  • Hillman, Jan, 1952-, et al. (author)
  • Bedside monitoring of CBF with xenon-CT and a mobile scanner : A novel method in neurointensive care
  • 2005
  • In: British Journal of Neurosurgery. - : Informa UK Limited. - 0268-8697 .- 1360-046X. ; 19:5, s. 395-401
  • Journal article (peer-reviewed)abstract
    • Combining previously independently established techniques our objective was to develop and evaluate a method for bedside qualitative assessment of cerebral blood flow in neurointensive care (NICU) patients. The CT-protocol was optimized using phantoms and comparing a mobile CT-scanner (Tomoscan-M, Philips) with two stationary CT scanners. Thirty-two per cent xenon was delivered with standard equipment (Enhancer 3000). Mean cortical flow in volunteers was 48 ml/min/100 g, with the mean vascular territorial flow varying between 45 and 66 ml/min/100 g. The potential clinical usefulness was illustrated in three patients with vasospasm following subarachnoid haemorrhage. Our conclusion is that quantitative bedside measurements of CBF can be repeatedly performed in an easy and safe way in a standard NICU-setting, using xenon-inhalation and a mobile CT-scanner. The method is useful for the decision-making, and is a good example of how the quality of multi-modality monitoring in the NICU can be developed and further diversified. © The Neurosurgical Foundation.
  •  
6.
  • Hunt, R, et al. (author)
  • Calculation of the properties of digital mammograms using a computer simulation
  • 2005
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 114:1-3, s. 395-398
  • Journal article (peer-reviewed)abstract
    • A Mote Carlo computer model of mammography has been developed to study and optimise the performance of digital mammographic systems. The program uses high-resolution voxel phantoms to model the breast, which simulate the adipose and fibroglandular tissues, Cooper's ligaments, ducts and skin in three dimensions. The model calculates the dose to each tissue, and also the quantities such as energy imparted to image pixels, noise per image pixel and scatter-to-primary (S/P) ratios. It allows studies of the dependence of image properties on breast structure and on position within the image. The program has been calibrated by calculating and measuring the pixel values and noise for a digital mammographic system. The thicknesses of two components of this system were unknown, and were adjusted to obtain a good agreement between measurement and calculation. The utility of the program is demonstrated with the calculations of the variation of the S/P ratio with and without a grid, and of the image contrast across the image of a 50-mm-thick breast phantom. © The Author 2005. Published by Oxford University Press. All rights reserved.
  •  
7.
  • Hunt, R, et al. (author)
  • Monte Carlo simulation of a mammographic test phantom
  • 2005
  • In: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 114:1-3, s. 432-435
  • Journal article (peer-reviewed)abstract
    • A test phantom, including a wide range of mammographic tissue equivalent materials and test details, was imaged on a digital mammographic system. In order to quantify the effect of scatter on the contrast obtained for the test details, calculations of the scatter-to-primary ratio (S/P) have been made using a Monte Carlo simulation of the digital mammographic imaging chain, grid and test phantom. The results show that the S/P values corresponding to the imaging conditions used were in the range 0.084-0.126. Calculated and measured pixel values in different regions of the image were compared as a validation of the model and showed excellent agreement. The results indicate the potential of Monte Carlo methods in the image quality-patient dose process optimisation, especially in the assessment of imaging conditions not available on standard mammographic units. © The Author 2005. Published by Oxford University Press. All rights reserved.
  •  
8.
  • Malusek, Alexandr, et al. (author)
  • Calculation of the energy absorption efficiency function of selected detector arrays using the MCNP code
  • 2007
  • Reports (other academic/artistic)abstract
    • This report describes a method for the calculation of the energy absorption efficiency function. It gives a theoretical justification of the method and presents results obtained using the MCNP4C code for (i) an infinite slab, (ii) a detector array without a collimator, and (iii) a detector array with a collimator. Moreover, it discusses an alternative method of scoring of the energy imparted per unit surface area in CTmod. This report is a supplement to the article “CTmod—a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson.
  •  
9.
  • Malusek, Alexandr, et al. (author)
  • CTmod : Mathematical Foundations
  • 2007
  • Reports (other academic/artistic)abstract
    • CTmod is a set of C++ class libraries primarily designed for the simulation of energy imparted to a CT-scanner detector array using the Monte Carlo method. This report describes mathematical methods and formulas that are used in the code. It is a supplement to the article “CTmod - a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson. In this report, random variables are denoted by a hat. For instance ˆx is a random variable and x is its sample. Points in space are denoted by bold capital letters, e.g. P. Directions are denoted by bold small letters, e.g. u. Inconsistencies in the current notation will be corrected in the next update of this report.
  •  
10.
  • Malusek, Alexandr, et al. (author)
  • CTmod : a toolkit for Monte Carlo simulation of projections including scatter in computed tomography
  • 2008
  • In: Computer Methods and Programs in Biomedicine. - : Elsevier. - 0169-2607 .- 1872-7565. ; 90:2, s. 167-178
  • Journal article (peer-reviewed)abstract
    • The CTmod toolkit is a set of C++ class libraries based on the CERN’s application development framework ROOT. It uses the Monte Carlo method to simulate energy imparted to a CT-scanner detector array. Photons with a given angle–energy distribution are emitted from the X-ray tube approximated by a point source, transported through a phantom, and their contribution to the energy imparted per unit surface area of each detector element is scored. Alternatively, the scored quantity may be the fluence, energy fluence, plane fluence, plane energy fluence, or kerma to air in the center of each detector element. Phantoms are constructed from homogenous solids or voxel arrays via overlapping. Implemented photon interactions (photoelectric effect, coherent scattering, and incoherent scattering) are restricted to the energy range from 10 to 200 keV. Variance reduction techniques include the collision density estimator and survival biasing combined with the Russian roulette. The toolkit has been used to estimate the amount of scatter in cone beam computed tomography and planar radiography.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view