SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandin Åsa) srt2:(2006-2009)"

Sökning: WFRF:(Sandin Åsa) > (2006-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kappert, Kai, et al. (författare)
  • Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis
  • 2006
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1079-5642 .- 1524-4636. ; 26:12, s. 2644-2651
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective - Growth factor- and reactive oxygen species (ROS)-induced activation of VSMCs is involved in vascular disease. This study investigates whether inhibitory oxidation of protein tyrosine phosphatases (PTPs) contributes to signaling in VSMCs in vitro and in vivo, and analyzes whether ROS- and growth factor-dependent vascular smooth muscle cell (VSMC) signaling is blunted by antioxidants that are able to activate oxidized PTPs. Methods and Results - Signaling induced by H2O2 and platelet-derived growth factor (PDGF) was analyzed in VSMCs with or without the antioxidants N-acetyl-cysteine (NAC) and tempol. Effects of antioxidants on PDGF-stimulated chemotaxis and proliferation were determined. In vivo effects of antioxidants were analyzed in the rat carotid balloon-injury model, by analyzing neointima formation, cell proliferation, PDGF beta-receptor status, and PTP expression and activity. NAC treatment prevented H2O2-induced PTP inhibition, and reduced H2O2-and ligand-induced PDGF beta-receptor phosphorylation, PDGF-induced proliferation, and chemotaxis of VSMCs. Antioxidants inhibited neointima formation and reduced PDGF receptor phosphorylation in the neointima and also increased PTP activity. Conclusion - PTP-inhibition was identified as an intrinsic component of H2O2-and PDGF-induced signaling in cultured VSMCs. The reduction in PDGF beta-receptor phosphorylation in vivo, and the increase in PTP activity, by antioxidants indicate activation of oxidized PTPs as a previously unrecognized mechanism for the antirestenotic effects of antioxidants. The findings thus suggest, in general terms, reactivation of oxidized PTPs as a novel antirestenotic strategy.
  •  
2.
  • Karlsson, Susann, et al. (författare)
  • Loss of T-Cell Protein Tyrosine Phosphatase Induces Recycling of the Platelet-derived Growth Factor (PDGF) beta-Receptor but Not the PDGF {alpha}-Receptor
  • 2006
  • Ingår i: Molecular Biology of the Cell. - 1059-1524 .- 1939-4586. ; 17:11, s. 4846-4855
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that the T-cell protein tyrosine phosphatase (TC-PTP) dephosphorylates the platelet-derived growth factor (PDGF) beta-receptor. Here, we show that the increased PDGF beta-receptor phosphorylation in TC-PTP knockout (ko) mouse embryonic fibroblasts (MEFs) occurs primarily on the cell surface. The increased phosphorylation is accompanied by a TC-PTP-dependent, monensin-sensitive delay in clearance of cell surface PDGF beta-receptors and delayed receptor degradation, suggesting PDGF beta-receptor recycling. Recycled receptors could also be directly detected on the cell surface of TC-PTP ko MEFs. The effect of TC-PTP depletion was specific for the PDGF beta-receptor, because PDGF alpha-receptor homodimers were cleared from the cell surface at the same rate in TC-PTP ko MEFs as in wild-type MEFs. Interestingly, PDGF alphabeta-receptor heterodimers were recycling. Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF beta-receptors colocalized with Rab4a, a marker for rapid recycling. In accordance with this, transient expression of a dominant-negative Rab4a construct increased the rate of clearance of cell surface receptors on TC-PTP ko MEFs. Thus, loss of TC-PTP specifically redirects the PDGF beta-receptor toward rapid recycling, which is the first evidence of differential trafficking of PDGF receptor family members.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy