SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sandqvist Aage) srt2:(2020-2023)"

Search: WFRF:(Sandqvist Aage) > (2020-2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benmahi, B., et al. (author)
  • Monitoring of the evolution of H2O vapor in the stratosphere of Jupiter over an 18-yr period with the Odin space telescope
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Context. The comet Shoemaker-Levy 9 impacted Jupiter in July 1994, leaving its stratosphere with several new species, with water vapor (H2O) among them. Aims. With the aid of a photochemical model, H2O can be used as a dynamical tracer in the Jovian stratosphere. In this paper, we aim to constrain the vertical eddy diffusion (Kzz) at levels where H2O is present. Methods. We monitored the H2O disk-averaged emission at 556.936 GHz with the space telescope between 2002 and 2019, covering nearly two decades. We analyzed the data with a combination of 1D photochemical and radiative transfer models to constrain the vertical eddy diffusion in the stratosphere of Jupiter. Results. Odin observations show us that the emission of H2O has an almost linear decrease of about 40% between 2002 and 2019. We can only reproduce our time series if we increase the magnitude of Kzz in the pressure range where H2O diffuses downward from 2002 to 2019, that is, from ~0.2 mbar to ~5 mbar. However, this modified Kzz is incompatible with hydrocarbon observations. We find that even if an allowance is made for the initially large abundances of H2O and CO at the impact latitudes, the photochemical conversion of H2O to CO2 is not sufficient to explain the progressive decline of the H2O line emission, which is suggestive of additional loss mechanisms. Conclusions. The Kzz we derived from the Odin observations of H2O can only be viewed as an upper limit in the ~0.2 mbar to ~5 mbar pressure range. The incompatibility between the interpretations made from H2O and hydrocarbon observations probably results from 1D modeling limitations. Meridional variability of H2O, most probably at auroral latitudes, would need to be assessed and compared with that of hydrocarbons to quantify the role of auroral chemistry in the temporal evolution of the H2O abundance since the SL9 impacts. Modeling the temporal evolution of SL9 species with a 2D model would naturally be the next step in this area of study.
  •  
2.
  • Biver, N., et al. (author)
  • Coma composition of comet 67P/Churyumov-Gerasimenko from radio-wave spectroscopy
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • We present the results of a molecular survey of comet 67P/Churyumov-Gerasimenko undertaken with the Institut de RadioAstronomie Millimétrique (IRAM) 30-m radio telescope in November–December 2021, when it had its most favourable apparition in decades. Observations at IRAM 30-m during the 12–16 November period covered 8 GHz bandwidth at 3 mm, 16 GHz at 2 mm, and 60 GHz in the 1 mm window domain. These were completed by snapshots at 1 mm on 12–13 December and a short observation of the H2O line at 557 GHz with the Odin sub-millimetre observatory on 17.0 November 2021, and with 18-cm observations of OH with the Nançay radio telescope. Less sensitive observations obtained at a previous perihelion passage on 18–22 September 2015 with IRAM and 9–12 November 2015 with Odin are also presented. The gas outflow velocity, outgassing pattern, and temperature have been accurately constrained by the observations. They are perfectly consistent with those measured in situ with the Rosetta/MIRO sub-millimetre instrument in 2015. In particular, the asymmetry of the line is well represented by a jet concentrating three-quarters of the outgassing in about π steradians. We derived abundances relative to water for seven molecules and significant upper limits for approximately five others. The retrieved abundances were compared to those measured in situ at the previous perihelion with Rosetta. While those of HCN, CH3OH, and HNCO are comparable, 67P is found to be depleted in H2S and relatively normal in CS (H2S/CS ≈ 3) in strong contradiction with the Rosetta/ROSINA mass spectrometer measurement of the H2S/CS2 (≈100) abundance ratio. While the formaldehyde total abundance found with IRAM 30-m when assuming it to be mostly produced by a distributed source (Haser parent scale length ≈8000 km) is similar to the one derived by Rosetta/ROSINA, we find that the formaldehyde coming from the nucleus is one order of magnitude less abundant than measured in situ by Rosetta/ROSINA. 
  •  
3.
  • Sandqvist, Aage, et al. (author)
  • Herschel and Odin observations of H 2 O, CO, CH, CH + , and [N» II] in the barred spiral galaxy NGC 1365: Bar-induced activity in the outer and inner circumnuclear tori
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Journal article (peer-reviewed)abstract
    • Context. The Odin satellite is now into its twentieth year of operation, much surpassing its design life of two years. One of its major astronomical pursuits was the search for and study of water vapor in diverse regions of the Solar System and the Milky Way galaxy. The Herschel space observatory was needed to detect water vapor in external galaxies. Aims. Our goal is to study the distribution and excitation of water vapor and other molecules in the barred spiral galaxy NGC 1365. Methods. Herschel has observed the central region of NGC 1365 in two positions, and both its SPIRE and PACS observations are available in the Herschel Science Archive. Herschel PACS images have been produced of the 70 and 160 μm infrared emission from the whole galaxy, and also of the cold dust distribution as obtained from the ratio of the 160 to 70 μm images. The Herschel SPIRE observations have been used to produce simultaneously observed maps of the 557 GHz o-H2O, 752 GHz p-H2O, 691 GHz CO(6-5), 1037 GHz CO(9-8), 537 GHz CH, 835 GHz CH+, and the 1461 GHz [N» II] lines (efficiently probing the warm ionized medium) in the inner bar and circumnuclear torus region;-however, these observations have no effective velocity resolution. For this reason Odin has recently observed the 557 GHz ortho-H2O ground state line in the central region with high (5 km s-1) spectral resolution. Results. The emission and absorption of H2O at 557 GHz, with a velocity resolution of 5 km s-1, has been marginally detected in NGC 1365 with Odin. The water vapor is predominantly located in a shocked 15″ (1.3 kpc) region near some central compact radio sources and hot-spot H» II regions, close to the northeast component of the molecular torus surrounding the nucleus. An analysis of the H2O line intensities and velocities indicates that a shock-region is located here. This is corroborated by a statistical image deconvolution of our SEST CO(3-2) observations, yielding 5″ resolution, and a study of our Very Large Array H» I absorption observations, as well as comparisons with published interferometric CO observations. Additionally, an enticing 20″ H» I ridge is found to extend south-southeast from the nucleus, coinciding in position with the southern edge of an O» III outflow cone, emanating from the nucleus. The molecular chemistry of the shocked central region of NGC 1365 is analyzed with special emphasis on the CO, H2O and CH, CH+ results. Conclusions. The dominating activity near the northeast (NE) torus component may have been triggered by the rapid bar-driven inflow into the circumnuclear torus causing cloud-cloud collisions and shocks, leading to the formation of stellar superclusters and, hence, also to more efficient PDR chemistry, which, here, may also benefit from cosmic ray focusing caused by the observed aligned magnetic field. The very high activity near the NE torus component may reflect the fact that the eastern bar-driven gas inflow into the NE region is much more massive than the corresponding western gas inflow into the southwest region. The H2O and CH+ emissions peak in the NE torus region, but the CO and CH emissions are more evenly distributed across the whole circumnuclear torus. The higher energy CO spectral line energy distribution (SLED) is nicely modeled by a low velocity (10 km s-1) shock, which may as well explain the required CH excitation and its high abundance in denser gas. The higher velocity (40 km s-1) shock required to model the H2O SLED in the NE torus region, paired with the intense UV radiation from the observed massive young stellar superclusters, may also explain the high abundance of CH+ in this region. The nuclear H» I ridge may have been created by the action of outflow-driving X-ray photons colliding with ice-covered dust grains. A precessing nuclear engine, as is suggested by the tilted massive inner gas torus, may be necessary to explain the various nuclear outflows encountered.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view