SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sarkar Tapati) srt2:(2023)"

Search: WFRF:(Sarkar Tapati) > (2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Belotcerkovtceva, Daria, et al. (author)
  • High current limits in chemical vapor deposited graphene spintronic devices
  • 2023
  • In: Nano Reseach. - : Springer. - 1998-0124 .- 1998-0000. ; 16:4, s. 4233-4239
  • Journal article (peer-reviewed)abstract
    • Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors, spin-torque oscillators, and potential spin-integrated circuits. However, despite the demonstrated high current densities in exfoliated graphene, the current-carrying capacity of large-scale chemical vapor deposited (CVD) graphene is not established. Particularly, the grainy nature of chemical vapor deposited graphene and the presence of a tunnel barrier in CVD graphene spin devices pose questions about the stability of high current electrical spin injection. In this work, we observe that despite structural imperfections, CVD graphene sustains remarkably highest currents of 5.2 × 108 A/cm2, up to two orders higher than previously reported values in multilayer CVD graphene, with the capacity primarily dependent upon the sheet resistance of graphene. Furthermore, we notice a reversible regime, up to which CVD graphene can be operated without degradation with operating currents as high as 108 A/cm2, significantly high and durable over long time of operation with spin valve signals observed up to such high current densities. At the same time, the tunnel barrier resistance can be modified by the application of high currents. Our results demonstrate the robustness of large-scale CVD graphene and bring fresh insights for engineering and harnessing pure spin currents for innovative device applications. 
  •  
2.
  • Ghosh, Anirudha, et al. (author)
  • Magnetic circular dichroism in the dd excitation in the van der Waals magnet CrI3 probed by resonant inelastic x-ray scattering
  • 2023
  • In: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 107:11
  • Journal article (peer-reviewed)abstract
    • We report on a combined experimental and theoretical study on CrI3 single crystals by employing the polarization dependence of resonant inelastic x-ray scattering (RIXS). Our investigations reveal multiple Cr 3d orbital splitting (dd excitations) as well as magnetic dichroism (MD) in the RIXS spectra. The dd excitation energies are similar on the two sides of the ferromagnetic transition temperature, T-C similar to 61 K, although MD in RIXS is predominant at 0.4 T magnetic field below TC. This demonstrates that the ferromagnetic superexchange interaction that is responsible for the interatomic exchange field is vanishingly small compared with the local exchange field that comes from exchange and correlation interaction among the interacting Cr 3d orbitals. The recorded RIXS spectra reported here reveal clearly resolved Cr 3d intraorbital dd excitations that represent transitions between electronic levels that are heavily influenced by dynamic correlations and multiconfiguration effects. Our calculations taking into account the Cr 3d hybridization with the ligand valence states and the full multiplet structure due to intra-atomic and crystal field interactions in Oh and D3d symmetry clearly reproduced the dichroic trend in experimental RIXS spectra.
  •  
3.
  • Haneef, Tahir, et al. (author)
  • Recent progress in two dimensional Mxenes for photocatalysis : a critical review
  • 2023
  • In: 2D Materials. - : Institute of Physics (IOP). - 2053-1583. ; 10:1
  • Research review (peer-reviewed)abstract
    • Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic functional groups on the surface results in excellent photocatalytic hydrogen evolution. In addition, MXenes' surface defects provide abundant CO2 adsorption sites. Moreover, their highly efficient catalytic oxidation activity is a result of their excellent two-dimensional nanomaterial structure and high-speed electron transport channels. This article comprehensively discusses the structure, synthesis techniques, photocatalytic applications (i.e. H-2 evolution, N-2 fixation, CO2 reduction, and degradation of pollutants), and recyclability of MXenes. This review also critically evaluates the MXene-based heterostructure and composites photocatalyst synthesis process and their performance for organic pollutant degradation. Finally, a prospect for further research is presented in environmental and energy sciences.
  •  
4.
  • Jena, S. K., et al. (author)
  • Spin-liquid state with precursor ferromagnetic clusters interacting antiferromagnetically in frustrated glassy tetragonal spinel Zn0.8Cu0.2FeMnO4
  • 2023
  • In: Journal of Physics. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 35:37
  • Journal article (peer-reviewed)abstract
    • Spinels (AB(2)O(4)) with magnetic ions occupying only the octahedral B sites have inherent magnetic frustration which inhibits magnetic long-range order (LRO) but may lead to exotic states. Here we report on the magnetic properties of the tetragonal spinel Zn0.8Cu0.2FeMnO4, the tetragonality resulting from the Jahn-Teller active Mn3+ ions. X-ray diffraction and x-ray photoelectron spectroscopy of the sample yielded the composition (Zn-0.8(2+) Cu-0.2(2+)) A [Fe-0.4(2+) Fe-0.6(3+) Mn3+](B)O4-delta. Analysis of the temperature dependence of magnetization (M), ac magnetic susceptibilities (chi' and chi''), dc susceptibility (chi), heat capacity C-p, and neutron diffraction (ND) measurements show complex temperature-dependent short-range order (SRO) but without LRO. The data of chi vs. T fits the Curie-Weiss law: chi = C/(T - theta) from T = 250 K to 400 K with theta similar or equal to 185 K signifying dominant ferromagnetic (FM) coupling with the FM exchange constant J/k(B) = 17 K, and C = 3.29 emu K mol(-1) Oe(-1) yielding an effective magnetic moment mu(eff) = 5.13 mu B resulting from the high-spin states of Cu2+ (A site) and Fe2+ (B site), while the B site trivalent ions Mn3+ and Fe3+ are in their low-spin states. The extrapolated saturation magnetization obtained from the M vs. H data at T = 2 K is explained using the spin arrangement (Cu2+down arrow)(A)[Fe2+down arrow, Fe3+down arrow, Mn3+down arrow](B) leading to FM clusters interact antiferromagnetically at low temperatures. Temperature dependence of d(chi T)/ dT shows the onset of ferrimagnetism below similar to 100 K and peaks near 47 K and 24 K. The relaxation time t obtained from temperature and frequency dependence of chi'' when fit to the power law and Vogel-Fulcher laws confirm the cluster spin-glass (SG) state. The magnetic field dependence of the SG temperature T-SG (H) follows the equation: T-SG (H) = T-SG (0) [ 1- AH(2/phi)] with T-SG (0) = 46.6 K, A = 8.6 x 10(-3) Oe(-0.593) and phi = 3.37. The temperature dependence of hysteresis loops yields coercivity H-C similar to 3.8 kOe at 2 K without exchange-bias, but HC decreases with increase in T becoming zero above 24 K, the T-SG(H) for H = 800 Oe. Variations of C-p vs. T from 2 K to 200 K in H = 0 and H = 90 kOe do not show any peak characteristic of LRO. However, after correcting for the lattice contribution, a broad weak peak typically of SRO becomes evident centered around 40 K. For T < 9 K, Cp varies as T-2; a typical signature of spin-liquids (SLs). Comparison of the ND measurements at 1.7 K and 79.4 K shows absence of LRO. Time dependence of thermo-remanent magnetization MTRM(t) studies below 9 K reveal weakening of the inter-cluster interaction with increase in temperature. A summary of these results is that in Zn0.8Cu0.2FeMnO4, ferromagnetic clusters interact antiferromagnetically without LRO but producing a cluster SG state at T-SG(0) = 46.6 K, followed by SL behavior below 9 K.
  •  
5.
  • Schulz, Noah, et al. (author)
  • Surface Termination-Enhanced Magnetism at Nickel Ferrite/2D Nanomaterial Interfaces : Implications for Spintronics
  • 2023
  • In: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 6:12, s. 10402-10412
  • Journal article (peer-reviewed)abstract
    • Engineering of interfacial magnetic properties provides an extra edge in designing heterostructures with desired properties for spintronics and spincaloritronics, without drastically changing the structure of the neighboring nonmagnetic material. Here, we report on the surface termination-enhanced magnetic properties of the ferrimagnetic insulator (FMI) nickel ferrite (NFO) with the inclusion of graphene (Gr) and monolayer hexagonal boron nitride (hBN). Depth-dependent X-ray photoelectron spectroscopy (XPS) measurements reveal the presence of a layer of adsorbed oxygen at the NFO/Gr and NFO/hBN interfaces. Magnetometry and transverse susceptibility measurements indicate that the inclusion of monolayer Gr increases the saturation magnetization (Ms) by 40% and decreases the effective magnetic anisotropy by 50% across 5 K ≤ T ≤ 300 K. A similar but less pronounced effect is observed for the inclusion of hBN. Density functional theory calculations further indicate that the increase in MS due to the inclusion of Gr or hBN arises on oxygen-terminated NFO, as observed in XPS measurements. These results present ways for engineering strong interfacial magnetic effects in FMI/2D nanomaterial systems, controlling magnetism by surface termination, and developing advanced spinterfaces for applications in spincaloritronics and spin insulatronics.
  •  
6.
  • Vantaraki, Christina (author)
  • Designing order with long-range interactions in mesoscopic magnetic chains
  • 2023
  • Licentiate thesis (other academic/artistic)abstract
    • This thesis investigates how the low-energy magnetic configuration of a mesoscopic chain can be tuned by geometrical modifications. The magnetic arrays made by single-domain stadium shaped elements positioned side-by-side were fabricated by patterning into a sputtered ferromagnetic thin film. The thickness of the thin film was determined by X-ray reflectivity measurements while Scanning Electron Microscopy and Atomic Force Microscopy were used to characterize the surface morphology of the nanostructures. Magnetic Force Microscopy was used to image the magnetic configuration of mesoscopic chains after applying a thermal annealing protocol and a field demagnetization protocol. By gradually modifying the geometrical arrangement of the half of mesospins, the magnetic chain is found to exhibit a transition from antiferromagnetic to dimer antiferromagnetic configuration after the thermal annealing treatment. After the field demagnetization protocol, both antiferromagnetic and dimer antiferromagnetic domains are formed. Micromagnetic simulations were performed to investigate how the interaction between the mesospins is affected by the geometrical modifications and a qualitative method was invented to examine the theoretical low-energy state of the magnetic chains. It is found that the low-energy magnetic configuration of the mesoscopic arrays is formed after the competition and collaboration of different interactions and is the one observed after the thermal annealing treatment. 
  •  
7.
  • Ziaalmolki, Sahar, et al. (author)
  • Enhanced visible-light-driven photocatalysis via magnetic nanocomposites : A comparative study of g-C3N4, g-C3N4/Fe3O4, and g-C3N4/Fe3O4/ZnO
  • 2023
  • In: Materials Today Communications. - : Elsevier. - 2352-4928. ; 37
  • Journal article (peer-reviewed)abstract
    • In this study, the photocatalytic activity of g-C3N4/Fe3O4/ZnO, g-C3N4/Fe3O4, and g-C3N4 catalysts when exposed to visible light was thoroughly examined. We deliberately take advantage of visible light potential to create electron-hole (e/h+) pairs with exceptional lifetimes. The g-C3N4/Fe3O4/ZnO nanocomposite stands out among the tested catalysts as the undisputed champion thanks to its excellent degrading efficiency. This remarkable result is due to the formation of an interface between g-C3N4 and ZnO, which increases the response to visible light and makes it easier to separate photo-induced electrons and holes, completely. Furthermore, the nanocomposite including Fe3O4 phase addressed the challenge of catalyst recovery and magnetic separation from the solution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view