SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Satoh M.) srt2:(2020-2023)"

Search: WFRF:(Satoh M.) > (2020-2023)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
3.
  •  
4.
  • Vanderkelen, I., et al. (author)
  • Global Heat Uptake by Inland Waters
  • 2020
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:12
  • Journal article (peer-reviewed)abstract
    • Heat uptake is a key variable for understanding the Earth system response to greenhouse gas forcing. Despite the importance of this heat budget, heat uptake by inland waters has so far not been quantified. Here we use a unique combination of global‐scale lake models, global hydrological models and Earth system models to quantify global heat uptake by natural lakes, reservoirs, and rivers. The total net heat uptake by inland waters amounts to 2.6 ± 3.2 ×1020 J over the period 1900–2020, corresponding to 3.6% of the energy stored on land. The overall uptake is dominated by natural lakes (111.7%), followed by reservoir warming (2.3%). Rivers contribute negatively (‐14%) due to a decreasing water volume. The thermal energy of water stored in artificial reservoirs exceeds inland water heat uptake by a factor ∼10.4. This first quantification underlines that the heat uptake by inland waters is relatively small, but non‐negligible.
  •  
5.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
6.
  •  
7.
  • Bossini, D., et al. (author)
  • Ultrafast Amplification and Nonlinear Magnetoelastic Coupling of Coherent Magnon Modes in an Antiferromagnet
  • 2021
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:7
  • Journal article (peer-reviewed)abstract
    • We investigate the role of domain walls in the ultrafast magnon dynamics of an antiferromagnetic NiO single crystal in a pump-probe experiment with variable pump photon energy. Analyzing the amplitude of the energy-dependent photoinduced ultrafast spin dynamics, we detect a yet unreported coupling between the material's characteristic terahertz- and gigahertz-magnon modes. We explain this unexpected coupling between two orthogonal eigenstates of the corresponding Hamiltonian by modeling the magnetoelastic interaction between spins in different domains. We find that such interaction, in the nonlinear regime, couples the two different magnon modes via the domain walls and it can be optically exploited via the exciton-magnon resonance.
  •  
8.
  • Karimo, Aasa, et al. (author)
  • Shared Positions on Divisive Beliefs Explain Interorganizational Collaboration: Evidence from Climate Change Policy Subsystems in 11 Countries
  • 2023
  • In: Journal of public administration research and theory. - : OXFORD UNIV PRESS. - 1053-1858 .- 1477-9803. ; 33:3, s. 421-433
  • Journal article (peer-reviewed)abstract
    • Collaboration between public administration organizations and various stakeholders is often prescribed as a potential solution to the current complex problems of governance, such as climate change. According to the Advocacy Coalition Framework, shared beliefs are one of the most important drivers of collaboration. However, studies investigating the role of beliefs in collaboration show mixed results. Some argue that similarity of general normative and empirical policy beliefs elicits collaboration, while others focus on beliefs concerning policy instruments. Proposing a new divisive beliefs hypothesis, we suggest that agreeing on those beliefs over which there is substantial disagreement in the policy subsystem is what matters for collaboration. Testing our hypotheses using policy network analysis and data on climate policy subsystems in 11 countries (Australia, Brazil, the Czech Republic, Germany, Finland, Ireland, Japan, Korea, Portugal, Sweden, and Taiwan), we find belief similarity to be a stronger predictor of collaboration when the focus is divisive beliefs rather than normative and empirical policy beliefs or beliefs concerning policy instruments. This knowledge can be useful for managing collaborative governance networks because it helps to identify potential competing coalitions and to broker compromises between them.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view