SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schmidt Susann) srt2:(2017)"

Search: WFRF:(Schmidt Susann) > (2017)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anastasopoulos, M., et al. (author)
  • Multi-Grid detector for neutron spectroscopy : Results obtained on time-of-flight spectrometer CNCS
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12:4
  • Journal article (peer-reviewed)abstract
    • The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.
  •  
2.
  • Ahmad, Mohammed Metwally Gomaa, et al. (author)
  • Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films
  • 2017
  • In: Materials Science in Semiconductor Processing. - : Elsevier BV. - 1369-8001 .- 1873-4081. ; 64, s. 32-38
  • Journal article (peer-reviewed)abstract
    • Nickel oxide thin films were deposited by a simple and low-cost spray pyrolysis technique using three different precursors: nickel nitrate, nickel chloride, and nickel acetate on corning glass substrates. X-ray diffraction show that the NiO films are polycrystalline and have a cubic crystal structure, although predominantly with a preferred 111-orientation in the growth direction and a random in-plane orientation. The deconvolution of the Ni 2p and O 1s core level X-ray photoelectron-spectra of nickel oxides produced by using different precursors indicates a shift of the binding energies. The sprayed NiO deposited from nickel nitrate has an optical transmittance in the range of 60-65% in the visible region. The optical band gap energies of the sprayed NiO films deposited from nickel nitrate, nickel chloride and nickel acetate are 3.5, 3.2 and 3.43 eV respectively. Also, the extinction coefficient and refractive index of NiO films have been calculated from transmittance and reflectance measurements. The average value of refractive index for sprayed films by nickel nitrate, nickel chloride and nickel acetate are 2.1, 1.6 and 1.85 respectively. It is revealed that the band gap and refractive index of NiO films by using nickel nitrate corresponds to the commonly reported values. We attribute the observed behavior in the optical band gap and optical constants as due to the change of the Ni/O ratio.
  •  
3.
  • Bakoglidis, Konstantinos, et al. (author)
  • Comparative study of macro- and microtribological properties of carbon nitride thin films deposited by HiPIMS
  • 2017
  • In: Wear. - : ELSEVIER SCIENCE SA. - 0043-1648 .- 1873-2577. ; 370
  • Journal article (peer-reviewed)abstract
    • The macro- and microtribological properties of carbon nitride thin films deposited by high power impulse magnetron sputtering at different substrate bias voltages (V-b) were investigated. V-b of -100, -150, -200, and-300 V were used. A Hysitron Triboindenter TI950 and a reciprocating Tribotechnic tribometer with diamond counterparts were used in order to assess the tribological performance of the films at the micro- and macroscale, respectively. Initial Hertzian contact pressures of 2.5 GPa, 3.3 GPa and 3.9 GPa were chosen for the comparative measurements at both scales. At the macroscale, films with higher initial roughness present an increased wear. Debris creation and asperity deformation takes place causing abrasive wear. At the microscale, compression of the surface material occurs. The run-in friction shows similar trends at both scales; an initial decrease and an increase thereafter. Steady-state friction is not reached at the microscale, attributed to the absence of a graphitic tribolayer in the contact. At the macroscale, all films show abrasive wear and debris creation. Here, the changes in friction coefficients are attributed to the debris loss from the contact during the tribotests. The CN film tested at 2.5 GPa shows a continuous increase of friction, due to the continuous loss of debris from the contact. The other films reach a steady-state friction coefficient, since most of the debris is lost before the end of the tribotests. (C) 2016 Elsevier B.V. All rights reserved.
  •  
4.
  • Bakoglidis, Konstantinos, et al. (author)
  • Rolling performance of carbon nitride-coated bearing components in different lubrication regimes
  • 2017
  • In: Tribology International. - : Pergamon Press. - 0301-679X .- 1879-2464. ; 114, s. 141-151
  • Journal article (peer-reviewed)abstract
    • The performance of carbon nitride (CN) coated roller bearings is investigated, using a micropitting rig. The rolling performance is evaluated using Stribeck test, with a continuously varying rolling speed (0.2 - 2 m/s). Rolling contact fatigue tests with constant speeds (0.5, 1, 2, and 3.5 m/s) are also conducted in order to study the high-cycle performance of the rollers. The obtained Stribeck curve shows that the presence of coatings eliminates run-in, resulting in low friction coefficients (similar to 0.08). Raman spectroscopy, performed at the wear tracks, reveals that CNx maintain stable chemical state. Coatings show abrasion although the wear rate is not detrimental for the performance of the rollers, since a CNx to-steel contact is retained during the entire rolling contact fatigue test.
  •  
5.
  • Imam, Mewlude, et al. (author)
  • Gas Phase Chemistry of Trimethylboron in Thermal Chemical Vapor Deposition
  • 2017
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:47, s. 26465-26471
  • Journal article (peer-reviewed)abstract
    • Alkylboranes, such as trimethylboron (TMB) and triethylboron (TEB), are promising alternative precursors in low temperature chemical vapor deposition (CVD) of boron-containing thin films. In this study, CVD growth of B-C films using TMB and quantum-chemical calculations to elucidate a gas phase chemical mechanism were undertaken. Dense, amorphous, boron-rich (B/C 1.5-3) films were deposited at 1000 degrees C in both dihydrogen and argon ambients, while films with crystalline B4C and B25C inclusions were deposited at 1100 degrees C in dihydrogen. A script-based automatization scheme was implemented for the quantum-chemical computations to enable time efficient screening of thousands of possible gas phase CVD reactions. The quantum-chemical calculations suggest TMB is mainly decomposed by an unimolecular alpha-H elimination of methane, which is complemented by dihydrogen-assisted elimination of methane in dihydrogen.
  •  
6.
  • Magnuson, Martin, 1965-, et al. (author)
  • Electronic properties and bonding in ZrHx thin films investigated by valence-bandx-ray photoelectron spectroscopy
  • 2017
  • In: Physical Review B Condensed Matter. - College Park, United States : American Physical Society. - 0163-1829 .- 1095-3795. ; 96:19
  • Journal article (peer-reviewed)abstract
    • The electronic structure and chemical bonding in reactively magnetron sputtered ZrHx (x = 0.15, 0.30, 1.16)thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level,and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significantreduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H1s–Zr 4d hybridization region at ∼6 eV below the Fermi level. For low hydrogen content (x = 0.15, 0.30), thefilms consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ-ZrHx(CaF2-type structure) phases, while for x = 1.16, the films form single-phase ZrHx that largely resembles thatof stoichiometric δ-ZrH2 phase. We show that the cubic δ-ZrHx phase is metastable as thin film up to x = 1.16,while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated ZrH1.16film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4p3/2 and 3d5/2peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifiesa charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemicalshifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affectsthe conductivity by charge redistribution in the valence band.
  •  
7.
  • Piscitelli, F., et al. (author)
  • The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS
  • 2017
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 12:3
  • Journal article (peer-reviewed)abstract
    • The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.
  •  
8.
  • Schmidt, Susann, et al. (author)
  • SiNx coatings deposited by reactive high power impulse magnetron sputtering: Process parameters influencing the residual coating stress
  • 2017
  • In: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 121:17
  • Journal article (peer-reviewed)abstract
    • The residual coating stress and its control is of key importance for the performance and reliability of silicon nitride (SiNx) coatings for biomedical applications. This study explores the most important deposition process parameters to tailor the residual coating stress and hence improve the adhesion of SiNx coatings deposited by reactive high power impulse magnetron sputtering (rHiPIMS). Reactive sputter deposition and plasma characterization were conducted in an industrial deposition chamber equipped with pure Si targets in N-2/Ar ambient. Reactive HiPIMS processes using N-2-to-Ar flow ratios of 0 and 0.28-0.3 were studied with time averaged positive ion mass spectrometry. The coatings were deposited to thicknesses of 2 mu m on Si(001) and to 5 mu m on polished CoCrMo disks. The residual stress of the X-ray amorphous coatings was determined from the curvature of the Si substrates as obtained by X-ray diffraction. The coatings were further characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and nano-indentation in order to study their elemental composition, morphology, and hardness, respectively. The adhesion of the 5 mu m thick coatings deposited on CoCrMo disks was assessed using the Rockwell C test. The deposition of SiNx coatings by rHiPIMS using N-2-to-Ar flow ratios of 0.28 yield dense and hard SiNx coatings with Si/N ratios amp;lt; 1. The compressive residual stress of up to 2.1 GPa can be reduced to 0.2 GPa using a comparatively high deposition pressure of 600 mPa, substrate temperatures below 200 degrees C, low pulse energies of amp;lt; 2.5 Ws, and moderate negative bias voltages of up to 100 V. These process parameters resulted in excellent coating adhesion (ISO 0, HF1) and a low surface roughness of 14 nm for coatings deposited on CoCrMo. (C) 2017 Author(s).
  •  
9.
  • Skjöldebrand, Charlotte, et al. (author)
  • Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiNx Coatings Aimed for Joint Replacements
  • 2017
  • In: Materials. - : MDPI AG. - 1996-1944. ; 10:2
  • Journal article (peer-reviewed)abstract
    • Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 degrees C, 350 degrees C or 430 degrees C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23-48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young's modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 +/- 1 GPa to 26 +/- 2 GPa and the Young's moduli ranging from 173 +/- 8 GPa to 293 +/- 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants.
  •  
10.
  • Tureson, Nina, et al. (author)
  • Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying
  • 2017
  • In: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 122:2
  • Journal article (peer-reviewed)abstract
    • ScN-rich (Sc,Nb)N solid solution thin films have been studied, motivated by the promising thermoelectric properties of ScN-based materials. Cubic Sc1-xNbxN films for 0 amp;lt;= x amp;lt;= 0.25 were epitaxially grown by DC reactive magnetron sputtering on a c-plane sapphire substrate and oriented along the (111) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of -45 mu V/K and a power factor of 6 x 10(-4) W/m K-2 at 750K. Estimated from room temperature Hall measurements, all samples exhibit a high carrier density of the order of 10(21) cm(-3). Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.5W m(-1) K-1) down to a minimum value of 2.2 Wm(-1) K-1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of similar to 5 due to the mass contrast in ScN, which increases the phonon scattering in the material. Published by AIP Publishing.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view