SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sehgal T) srt2:(2010-2014)"

Search: WFRF:(Sehgal T) > (2010-2014)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ackermann, M., et al. (author)
  • SEARCH FOR DARK MATTER SATELLITES USING FERMI-LAT
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 747:2, s. 121-
  • Journal article (peer-reviewed)abstract
    • Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the b (b) over bar channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b (b) over bar channel.
  •  
2.
  • Ackermann, M., et al. (author)
  • Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope
  • 2014
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:4
  • Journal article (peer-reviewed)abstract
    • The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on.-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in. rays, and we present.-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse.-ray background modeling, and assumed dark matter density profile.
  •  
3.
  • Albiol, T., et al. (author)
  • SARNET : Severe accident research network of excellence
  • 2010
  • In: PROG NUCL ENERGY. - : Elsevier BV. ; , s. 2-10
  • Conference paper (peer-reviewed)abstract
    • Fifty-one organisations network in SARNET (Severe Accident Research NETwork of Excellence) their research capacities in order to resolve the most important pending issues for enhancing, with regard to Severe Accidents (SA). the safety of existing and future Nuclear Power Plants (NPPs). This project. co-funded by the European Commission (EC) under the 6th Framework Programme, has been defined in order to optimise the use of the available means and to constitute sustainable research groups in the European Union. SARNET tackles the fragmentation that may exist between the different national R&D programmes, in defining common research programmes and developing common computer tools and methodologies for safety assessment. SARNET comprises most of the organisations involved in SA research in Europe, plus Canada. To reach these objectives, all the organisations networked in SARNET contributed to a joint Programme of Activities, which consisted of: Implementation of an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents: Harmonization and re-orientation of the research programmes, and definition of new ones; Analysis of the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena; Development of the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA), which capitalizes in terms of physical models the knowledge produced within SARNET; Development of Scientific Databases in which all the results of research programmes are stored in a common format (DATANET); Development of a common methodology for Probabilistic Safety Assessment of NPPs; Development of short courses and writing a textbook on Severe Accidents for students and researchers; Promotion of personnel mobility amongst various European organisations. This paper presents the major achievements after four and a half years of operation of the network, in terms of knowledge gained, of improvement of the ASTEC reference code, of dissemination of results and of integration of the research programmes conducted by the various partners. After this first period (2004-2008), co-funded by the EC, a further contract SARNET2 with the EC for the next four years started in April 2009 as part of the 7th Framework Programme. During this period, the networking activities will focus mainly on the remaining pending issues as determined during the first period, experimental activities will be directly included in the common work and the network will evolve toward complete self-sustainability. The bases for such an evolution are presented in the last part of the paper.
  •  
4.
  • Van Dorsselaere, J. -P, et al. (author)
  • Sustainable integration of EU research in severe accident phenomenology and management
  • 2011
  • In: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493. ; 241:9, s. 3451-3460
  • Journal article (peer-reviewed)abstract
    • In order to optimise the use of the available means and to constitute sustainable research groups in the European Union, the Severe Accident Research NETwork of Excellence (SARNET) has gathered, between 2004 and 2008, 51 organizations representing most of the actors involved in severe accident (SA) research in Europe plus Canada. This project was co-funded by the European Commission (EC) under the 6th Euratom Framework Programme. Its objective was to resolve the most important pending issues for enhancing, in regard of SA, the safety of existing and future nuclear power plants (NPPs). SARNET tackled the fragmentation that existed between the national R&D programmes, in defining common research programmes and developing common computer codes and methodologies for safety assessment. The Joint Programme of Activities consisted in:Implementing an advanced communication tool for accessing all project information, fostering exchange of information, and managing documents;Harmonizing and re-orienting the research programmes, and defining new ones;Analyzing the experimental results provided by research programmes in order to elaborate a common understanding of relevant phenomena;Developing the ASTEC code (integral computer code used to predict the NPP behaviour during a postulated SA) by capitalizing in terms of physical models the knowledge produced within SARNET;Developing scientific databases, in which the results of research experimental programmes are stored in a common format;Developing a common methodology for probabilistic safety assessment of NPPs;Developing short courses and writing a text book on severe accidents for students and researchers;Promoting personnel mobility amongst various European organizations. This paper presents the major achievements after four and a half years of operation of the network, in terms of knowledge gained, of improvements of the ASTEC reference code, of dissemination of results and of integration of the research programmes conducted by the various partners. Most initial objectives were reached but the continuation of the SARNET network, co-funded by EC in the 7th Framework Programme (SARNET2 project that started in April 2009 for 4 years), will consolidate the first assets and focus mainly on the highest priority pending issues as determined during the first period. The objective will be also to make the network evolve towards a complete self-sustainability.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view