SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Seibert A.) srt2:(2005-2009)"

Search: WFRF:(Seibert A.) > (2005-2009)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Breuer, L., et al. (author)
  • Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I : Model intercomparison with current land use
  • 2009
  • In: Advances in Water Resources. - : Elsevier BV. - 0309-1708 .- 1872-9657. ; 32:2, s. 129-146
  • Journal article (peer-reviewed)abstract
    • This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. in this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment. Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations.
  •  
3.
  • Chapman, H N, et al. (author)
  • Coherent imaging at FLASH
  • 2009
  • In: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 186:1, s. 012051-
  • Journal article (peer-reviewed)abstract
    • We have carried out high-resolution single-pulse coherent diffractive imaging at the FLASH free-electron laser. The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of an object before that object turns into a plasma and explodes. In particular we are developing imaging of biological specimens beyond conventional radiation damage resolution limits, developing imaging of ultrafast processes, and testing methods to characterize and perform single-particle imaging.
  •  
4.
  • Huisman, J. A., et al. (author)
  • Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III : Scenario analysis
  • 2009
  • In: Advances in Water Resources. - : Elsevier BV. - 0309-1708 .- 1872-9657. ; 32:2, s. 159-170
  • Journal article (peer-reviewed)abstract
    • An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions.
  •  
5.
  • Viney, N. R., et al. (author)
  • Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II : Ensemble combinations and predictions
  • 2009
  • In: Advances in Water Resources. - : Elsevier BV. - 0309-1708 .- 1872-9657. ; 32:2, s. 147-158
  • Journal article (peer-reviewed)abstract
    • This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles. in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models.
  •  
6.
  • Beck, R., et al. (author)
  • GPSDTN : Predictive velocity-enabled delay-tolerant networks for arctic research and sustainability
  • 2007
  • In: Second International Conference on Internet Monitoring and Protection (ICIMP 2007). - Los Alamitos, Calif : IEEE Computer Society Press. - 9780769529110
  • Conference paper (peer-reviewed)abstract
    • A Delay-Tolerant Network (DTN) is a necessity for communication nodes that may need to wait for long periods to form networks. The IETF Delay Tolerant Network Research Group is developing protocols to enable such networks for a broad variety of Earth and interplanetary applications. The Arctic would benefit from a predictive velocity-enabled version of DTN that would facilitate communications between sparse, ephemeral, often mobile and extremely power-limited nodes. We propose to augment DTN with power-aware, buffer-aware location- and time-based predictive routing for ad-hoc meshes to create networks that are inherently location and time (velocity) aware at the network level to support climate research, emergency services and rural education in the Arctic. On Earth, the primary source of location and universal time information for networks is the Global Positioning System (GPS). We refer to this Arctic velocity-enabled Delay-Tolerant Network protocol as "GPSDTN" accordingly. This paper describes our requirements analysis and general implementation strategy for GPSDTN to support Arctic research and sustainability efforts
  •  
7.
  • Chapman, Henry N., et al. (author)
  • Femtosecond diffractive imaging with a soft-X-ray free-electron laser
  • 2006
  • In: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 2:12, s. 839-843
  • Journal article (peer-reviewed)abstract
    • Theory predicts(1-4) that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 x 10(13) W cm(-2) pulse, containing 10(12) photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling(5-9), shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one(10).
  •  
8.
  • Chapman, Henry N, et al. (author)
  • Femtosecond time-delay X-ray holography
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 448:7154, s. 676-679
  • Journal article (peer-reviewed)abstract
    • Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment1, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging2, 3 can be used to achieve high resolution, beyond radiation damage limits for biological samples4. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.
  •  
9.
  • Lyon, S.W., et al. (author)
  • Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis
  • 2009
  • In: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 13, s. 595-604
  • Journal article (peer-reviewed)abstract
    • Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.
  •  
10.
  • Marchesini, Stefano, et al. (author)
  • Massively parallel X-ray holography
  • 2008
  • In: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 2:9, s. 560-563
  • Journal article (peer-reviewed)abstract
    • Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography(1,2,3) as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array(4) placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude-and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view