SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sellebjerg F) srt2:(2010-2014)"

Search: WFRF:(Sellebjerg F) > (2010-2014)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Beecham, Ashley H, et al. (author)
  • Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis.
  • 2013
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 45:11, s. 1353-60
  • Journal article (peer-reviewed)abstract
    • Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 subjects with multiple sclerosis and 26,703 healthy controls. In these 80,094 individuals of European ancestry, we identified 48 new susceptibility variants (P < 5.0 × 10(-8)), 3 of which we found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants at 103 discrete loci outside of the major histocompatibility complex. With high-resolution Bayesian fine mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalog of multiple sclerosis risk variants and illustrates the value of fine mapping in the resolution of GWAS signals.
  •  
3.
  •  
4.
  • Sawcer, Stephen, et al. (author)
  • Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 476:7359, s. 214-219
  • Journal article (peer-reviewed)abstract
    • Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
  •  
5.
  •  
6.
  • Khademi, M, et al. (author)
  • Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course
  • 2011
  • In: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 17:3, s. 335-343
  • Journal article (peer-reviewed)abstract
    • Background: Levels of CXCL13, a potent B-cell chemoattractant, are elevated in the cerebrospinal fluid (CSF) during multiple sclerosis (MS) and are associated with markers of MS activity. Levels decrease upon effective treatments. Objective: Here we validate the potential role of CSF CXCL13 as a biomarker for aspects of MS in a large amount of clinical material, the majority collected at early diagnostic work-up. Methods: CXCL13 was measured by ELISA in 837 subjects: relapsing–remitting MS (RRMS; n = 323), secondary progressive MS (SPMS; n = 40), primary progressive MS (PPMS; n = 24), clinically isolated syndrome (CIS; n = 79), other neurological diseases (ONDs; n = 181), ONDs with signs of inflammation or viral/bacterial infections (iONDs; n = 176) and healthy controls ( n = 14). Results: Subjects with viral/bacterial infections had extremely high CXCL13 levels compared to all included groups ( p < 0.0001). CXCL13 was otherwise significantly higher in MS compared to the remaining controls ( p < 0.0001), and CIS ( p < 0.01). A significant and positive correlation between CXCL13 and relapse rate, the results obtained for the Expanded Disability Status Scale (EDSS) and the number of lesions detected by MRI was demonstrated. CXCL13 was increased in CIS conversion to clinically definite MS ( p < 0.001). Oligoclonal immunoglobulin band (OCB)-positive CIS or MS had significantly increased CXCL13 levels compared to OCB-negative CIS or MS ( p < 0.001 and p < 0.0001, respectively). Conclusion: CXCL13 was associated with disease exacerbations and unfavourable prognosis in RRMS. Increased CXCL13 was not specific for MS since subjects with viral/bacterial infections exhibited even higher levels. High levels predicted CIS conversion to MS. We suggest that measurement of CSF CXCL13 can be part of the armamentarium in the diagnostic and prognostic work-up in MS and be of help in future treatment decisions.
  •  
7.
  •  
8.
  •  
9.
  • Bornsen, L, et al. (author)
  • Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis
  • 2011
  • In: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 17:1, s. 32-42
  • Journal article (peer-reviewed)abstract
    • Background:The cytokine osteopontin (OPN) is a potential key player in the immunopathogenesis of multiple sclerosis (MS) and a candidate biomarker for disease activity. Objective:The objective of this study was to examine concentrations of OPN in the cerebrospinal fluid (CSF) across the clinical spectrum of MS. Methods:Our research consisted of a cross-sectional study of patients from two randomized, placebo-controlled trials. Concentrations of OPN and other blood and CSF markers were determined using an enzyme-linked immunosorbent assay (ELISA). Samples were obtained from untreated patients with exacerbation of clinically isolated syndrome (CIS) ( n = 25) and relapsing–remitting MS (RRMS) ( n = 41) of whom 48 participated in clinical trials, randomly allocated to treatment with placebo or methylprednisolone (MP) and undergoing repeated sampling after 3 weeks. Furthermore, we obtained CSF and blood samples from patients with primary progressive MS (PPMS, n = 9), secondary progressive MS (SPMS, n = 28) and other neurological disorders (OND, n = 44), and blood samples from 24 healthy subjects. Results:OPN concentrations were significantly increased in the CSF of patients with CIS ( p = 0.02) and RRMS ( p < 0.001) in exacerbation compared to patients with OND, and increased levels of OPN were associated with high values of other biomarkers of inflammation. At 3-week follow-up CSF OPN concentrations had decreased significantly from baseline regardless treatment with placebo or MP. Patients with PPMS had increased OPN levels in the CSF ( p = 0.004) and high CSF levels of OPN were associated with high degrees of disability. Conclusions:OPN concentration in the CSF is a dynamic indicator of disease activity in RRMS, presumably reflecting ongoing inflammation. Increased CSF OPN concentrations in PPMS may indicate ongoing inflammation even in these patients.
  •  
10.
  • Christensen, JR, et al. (author)
  • CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis
  • 2013
  • In: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 19:7, s. 877-884
  • Journal article (peer-reviewed)abstract
    • The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. Objectives: To study cerebrospinal fluid (CSF) biomarkers and clarify whether inflammation and axonal damage are associated in progressive MS. Methods: Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing–remitting (RRMS) and 20 non-inflammatory neurological disease (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. Results: Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13 was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels of the biomarkers after one year of treatment. All biomarkers were continuously increased after one year of follow-up except MBP, which decreased. Conclusion: CSF biomarkers of inflammation, axonal damage and demyelination are continuously increased in progressive MS patients and correlate. These findings parallel pathology studies, emphasise a relationship between inflammation, axonal damage and demyelination and support the use of CSF biomarkers in progressive MS clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view