SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sha Lijuan) srt2:(2019)"

Search: WFRF:(Sha Lijuan) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Comas-Bru, Laia, et al. (author)
  • Evaluating model outputs using integrated global speleothem records of climate change since the last glacial
  • 2019
  • In: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 15:4, s. 1557-1579
  • Journal article (peer-reviewed)abstract
    • Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally distributed speleothem delta O-18 records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on delta O-18 values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.
  •  
2.
  • Wei, Guohui, et al. (author)
  • Photothermal catalytic activity and mechanism of LaNixCo1-xO3(0 <= x <= 1) perovskites for CO2 reduction to CH4 and CH3OH with H2O
  • 2019
  • In: Materials Research Express. - : IOP Publishing. - 2053-1591. ; 6:8
  • Journal article (peer-reviewed)abstract
    • A series of LaNixCo1-xO3 perovskites were synthesized by sol-gel combustion method, the photothermal catalysis of CO2 and H2O into CH4 and CH3OH was investigated systematically. The crystal structure, surface area, oxygen vacancies, band structures and catalytic performance of LaNixCo1-xO3 perovskites were characterized thoroughly in order to understand the design principle of the material for such a photothermal catalysis of CO2 and H2O. With the change of x value, the best catalytic performance was achieved at x = 0.4 and the accumulated yield of CH4 and CH3OH can reach 678.57, 20.83 mu molg(-1) in 6 h, which were 3.4 and 3.8, 1.9 and 2.2 times of that of two end composition, LaCoO3 and LaNiO3 under the same condition. For LaNi0.4Co0.6O3, the surface area reached a maximum concentration of oxygen vacancy while the band gap reached a minimum of 1.42 eV. It is evident that the formation of solid solution between LaMO3 (M = transition metals) compounds can be a general strategy for the new catalyst design.
  •  
3.
  • 2019
  • Journal article (peer-reviewed)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view