SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shepon Alon) srt2:(2021)"

Search: WFRF:(Shepon Alon) > (2021)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gephart, Jessica, et al. (author)
  • Environmental performance of blue foods
  • 2021
  • In: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 597:7876, s. 360-365
  • Journal article (peer-reviewed)abstract
    • Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets. © 2021, The Author(s)
  •  
2.
  • Shepon, Alon, et al. (author)
  • Exploring sustainable aquaculture development using a nutrition-sensitive approach
  • 2021
  • In: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 69
  • Journal article (peer-reviewed)abstract
    • Micronutrient deficiencies constitute a pressing public health concern, especially in developing countries. As a dense source of bioavailable nutrients, aquatic foods can help alleviate such deficiencies. Developing aquaculture that provides critical micronutrients without sacrificing the underlying environmental resources that support these food production systems is therefore essential. Here, we address these dual challenges by optimizing nutrient supply while constraining the environmental impacts from aquaculture. Using life cycle assessment and nutritional data from Indonesia, a top aquaculture producer, we sought to identify aquaculture systems that increase micronutrient supplies and reduce environmental impacts (e.g., habitat destruction, freshwater pollution, and greenhouse gas emissions). Aquaculture systems in Indonesia vary more by environmental impacts (e.g. three order of magnitude for fresh water usage) than by nutritional differences (approximately +/- 50% differences from mean relative nutritional score). Nutritional-environmental tradeoffs exist, with no single system offering a complete nutrition-environment win-win. We also find that previously proposed future aquaculture paths sub optimally balance nutritional and environmental impacts. Instead, we identify optimized aquaculture production scenarios for 2030 with nutrient per gram densities 105-320% that of business-as-usual production and with environmental impacts as low as 25% of those of business-as-usual. In these scenarios Pangasius fish (Pangasius hypophthalmus) ponds prove desirable due to their low environmental impacts, but average relative nutrient score. While the environmental impacts of the three analyzed brackish water systems range from average to high compared to other aquaculture systems, their nutritional attributes render them necessary when maximizing all nutrients except vitamin A. Common carp (Cyprinus carpio) ponds also proved essential in maximizing zinc and omega n-3, while Tilapia (Oreochromis niloticus) cages were necessary in optimizing the production of calcium and vitamin A. These optimal aquaculture strategies also reduce business-as-usual demand for wild fish-based feed by 0-30% and mangrove expansion by 0-75% with no additional expansion into inland open waters and freshwater ponds. As aquaculture production expands globally, optimization presents a powerful opportunity to reduce malnutrition rates at reduced environmental impacts. The proposed reorientation promotes UN sustainable development goals 2 (zero hunger), 3 (health), 13 (climate action) and 14 (life under water) and requires concerted and targeted policy changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view