SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shvetsov V.) srt2:(2015-2019)"

Search: WFRF:(Shvetsov V.) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G, et al. (author)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Grigorenko, L, et al. (author)
  • Scientific program of DERICA-prospective accelerator and storage ring facility for radioactive ion beam research
  • 2019
  • In: Physics-Uspekhi. - 1468-4780 .- 1063-7869. ; 62:7, s. 675-690
  • Journal article (peer-reviewed)abstract
    • Studies of radioactive ions (RIs) are the most thriving field of low-energy nuclear physics. In this paper, the concept and the scientific agenda of the prospective accelerator and storage ring facility for RI beam (RIB) research are proposed for a large-scale international project based at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research. The motivation for the new facility is discussed and its characteristics are briefly presented and shown to be comparable to those of advanced world centers, the so-called "RIB factories". In the project, the emphasis is made on studies with short-lived RIBs in storage rings. A unique feature of the project is the possibility of studying electron-RI interactions in a collider experiment to determine the fundamental properties of nuclear matter, in particular, electromagnetic form factors of exotic nuclei.
  •  
3.
  • Kozyrev, A., et al. (author)
  • A comparative study of LaBr3(Ce3+) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications
  • 2016
  • In: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 87:8
  • Journal article (peer-reviewed)abstract
    • The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA’s BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce3+) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce3+) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce3+) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft. Published by AIP Publishing.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view