SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Simpson Sheila A.) "

Search: WFRF:(Simpson Sheila A.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • van der Valk, Ralf J P, et al. (author)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Journal article (peer-reviewed)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
2.
  • Saraiva, Jorge M., et al. (author)
  • Issues in Human GenEthics
  • 2001
  • In: Genetics in Medicine. - 1098-3600. ; 3:3, s. 218-218
  • Journal article (peer-reviewed)
  •  
3.
  • Squitieri, Ferdinando, et al. (author)
  • Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course.
  • 2003
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 126:Pt 4, s. 946-55
  • Journal article (peer-reviewed)abstract
    • Huntington disease is caused by a dominantly transmitted CAG repeat expansion mutation that is believed to confer a toxic gain of function on the mutant protein. Huntington disease patients with two mutant alleles are very rare. In other poly(CAG) diseases such as the dominant ataxias, inheritance of two mutant alleles causes a phenotype more severe than in heterozygotes. In this multicentre study, we sought differences in the disease features between eight homozygotes and 75 heterozygotes for the Huntington disease mutation. We identified subjects homozygous for the Huntington disease mutation by DNA testing and compared their clinical features (age at onset, symptom presentation, disease severity and disease progression) with those of a group of heterozygotes, who were assessed longitudinally. The age at onset of symptoms in the homozygote cases was within the range expected for heterozygotes with the same CAG repeat lengths, whereas homozygotes had a more severe clinical course. The observation of a more rapid decline in motor, cognitive and behavioural symptoms in homozygotes was consistent with the extent of neurodegeneration as available at imaging in three patients, and at the post-mortem neuropathological report in one case. Our analysis suggests that although homozygosity for the Huntington disease mutation does not lower the age at onset of symptoms, it affects the phenotype and the rate of disease progression. These data, once confirmed in a larger series of patients, point to the possibility that the mechanisms underlying age at onset and disease progression in Huntington disease may differ.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view