SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Soldan C. Paz) srt2:(2024)"

Search: WFRF:(Soldan C. Paz) > (2024)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  • Sheikh, U., et al. (author)
  • Benign termination of runaway electron beams on ASDEX Upgrade and TCV
  • 2024
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 66:3
  • Journal article (peer-reviewed)abstract
    • This paper discusses the development of a benign termination scenario for runaway electron (RE) beams on ASDEX Upgrade and TCV. A systematic study revealed that a low electron density (n e) companion plasma was required to achieve a large MHD instability, which expelled the confined REs over a large wetted area and allowed for the conversion of magnetic energy to radiation. Control of the companion plasma ne was achieved via neutral pressure regulation and was agnostic to material injection method. The neutral pressure required for recombination was found to be dependent on impurity species, quantity and RE current. On TCV, n e increased at neutral pressures above 1 Pa, indicating that higher collisionality between the REs and neutrals may lead to an upper pressure limit. The conversion of magnetic energy to radiated energy was measured on both machines and a decrease in efficiency was observed at high neutral pressure on TCV. The benign termination technique was able to prevent any significant increase in maximum heat flux on AUG from 200 to 600 kA of RE current, highlighting the ability of this approach to handle fully formed RE beams.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view