SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Steer A. N.) srt2:(2015-2019)"

Search: WFRF:(Steer A. N.) > (2015-2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Romagnoni, A, et al. (author)
  • Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10351-
  • Journal article (peer-reviewed)abstract
    • Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers.
  •  
2.
  • Molina, F., et al. (author)
  • Tz=-1 → 0 β-Decays of 54Ni, 50Fe, 46Cr, and 42Ti and Comparison With Mirror (3He,t) Measurements
  • 2015
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:1
  • Journal article (peer-reviewed)abstract
    • We have studied the β decay of the Tz=−1, f7/2 shell nuclei Ni54, Fe50, Cr46, and Ti42 produced in fragmentation reactions. The proton separation energies in the daughter Tz=0 nuclei are relatively large (≈4–5 MeV) so studies of the γ rays are essential. The experiments were performed at GSI as part of the Stopped-beam campaign with the RISING setup consisting of 15 Euroball Cluster Ge detectors. From the newly obtained high precision β-decay half-lives, excitation energies, and β branching ratios, we were able to extract Fermi and Gamow-Teller transition strengths in these β decays. With these improved results it was possible to compare in detail the Gamow-Teller (GT) transition strengths observed in beta decay including a sensitivity limit with the strengths of the Tz=+1 to Tz=0 transitions derived from high resolution (3He,t) reactions on the mirror target nuclei at RCNP, Osaka. The accumulated B(GT) strength obtained from both experiments looks very similar although the charge exchange reaction provides information on a broader energy range. Using the “merged analysis” one can obtain a full picture of the B(GT) over the full Qβ range. Looking at the individual transitions some differences are observed, especially for the weak transitions. Their possible origins are discussed.
  •  
3.
  • Wang, F., et al. (author)
  • Reinvestigation of the excited states in the proton emitter Lu-151 : Particle-hole excitations across the N = Z=64 subshell
  • 2017
  • In: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 96:6
  • Journal article (peer-reviewed)abstract
    • The excited states of the proton emitter Lu-151 were reinvestigated in a recoil-decay tagging experiment at the Accelerator Laboratory of the University of Jyvaskyla (JYFL). The level scheme built on the ground state of 151Lu was updated with five new y-ray transitions. Large-scale shell model calculations were carried out in the model space consisting of the neutron and proton orbitals 0g(7/2), Id(5/2), Id(3/2), 2s(1/2), and Oh(1/2) with the optimized monopole interaction in order to interpret the experimental level scheme of Lu-151. It is found that the excitation energies of states above the 27/2(-) and 23/2(+) isomeric levels in Lu-151 can be sensitive to excitations from g(7/2) and d(5/2) to single-particle orbitals above N = Z = 64.
  •  
4.
  • Wang, F., et al. (author)
  • Spectroscopic factor and proton formation probability for the d3/2 proton emitter 151mLu
  • 2017
  • In: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 770, s. 83-87
  • Journal article (peer-reviewed)abstract
    • The quenching of the experimental spectroscopic factor for proton emission from the short-lived d3/2 isomeric state in 151mLu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyväskylä. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15.4(8) μs, respectively, in agreement with another recent study. These new experimental data can resolve the discrepancy in the spectroscopic factor calculated using the spherical WKB approximation. Using the R-matrix approach it is found that the proton formation probability indicates no significant hindrance for the proton decay of 151mLu.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view