SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strak Maciej) srt2:(2022)"

Sökning: WFRF:(Strak Maciej) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Jie, et al. (författare)
  • Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort : the ELAPSE project
  • 2022
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 126:10, s. 1499-1507
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence linking ambient air pollution to bladder cancer is limited and mixed.Methods: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders.Results: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3).Conclusions: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
  •  
2.
  • Chen, Jie, et al. (författare)
  • Long-Term Exposure to Source-Specific Fine Particles and Mortality-A Pooled Analysis of 14 European Cohorts within the ELAPSE Project
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:13, s. 9277-9290
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed mortality risks associated with sourcespecific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 mu g/m(3) increase) across five identified sources. On a 1 mu g/m(3) basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.
  •  
3.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long term exposure to air pollution and kidney parenchyma cancer – Effects of low-level air pollution : a Study in Europe (ELAPSE)
  • 2022
  • Ingår i: Environmental Research. - : Academic Press Inc.. - 0013-9351 .- 1096-0953. ; 215
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited.METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level.RESULTS: The participants were followed from baseline (1985–2005) to 2011–2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5–95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8–39.2), 15.3 μg/m3 (8.6–19.2), 1.6 10−5 m−1 (0.7–2.1), and 87.0 μg/m3 (70.3–97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10−5 m−1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma.CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy