SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strand O.) srt2:(2020-2024)"

Search: WFRF:(Strand O.) > (2020-2024)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
4.
  •  
5.
  •  
6.
  • Aslam, Tayyba N., et al. (author)
  • A survey of preferences for respiratory support in the intensive care unit for patients with acute hypoxaemic respiratory failure
  • 2023
  • In: Acta Anaesthesiologica Scandinavica. - : WILEY. - 0001-5172 .- 1399-6576. ; 67:10, s. 1383-1394
  • Journal article (peer-reviewed)abstract
    • BackgroundWhen caring for mechanically ventilated adults with acute hypoxaemic respiratory failure (AHRF), clinicians are faced with an uncertain choice between ventilator modes allowing for spontaneous breaths or ventilation fully controlled by the ventilator. The preferences of clinicians managing such patients, and what motivates their choice of ventilator mode, are largely unknown. To better understand how clinicians preferences may impact the choice of ventilatory support for patients with AHRF, we issued a survey to an international network of intensive care unit (ICU) researchers.MethodsWe distributed an online survey with 32 broadly similar and interlinked questions on how clinicians prioritise spontaneous or controlled ventilation in invasively ventilated patients with AHRF of different severity, and which factors determine their choice.ResultsThe survey was distributed to 1337 recipients in 12 countries. Of these, 415 (31%) completed the survey either fully (52%) or partially (48%). Most respondents were identified as medical specialists (87%) or physicians in training (11%). Modes allowing for spontaneous ventilation were considered preferable in mild AHRF, with controlled ventilation considered as progressively more important in moderate and severe AHRF. Among respondents there was strong support (90%) for a randomised clinical trial comparing spontaneous with controlled ventilation in patients with moderate AHRF.ConclusionsThe responses from this international survey suggest that there is clinical equipoise for the preferred ventilator mode in patients with AHRF of moderate severity. We found strong support for a randomised trial comparing modes of ventilation in patients with moderate AHRF.
  •  
7.
  • Romanelli, M., et al. (author)
  • Code Integration, Data Verification, and Models Validation Using the ITER Integrated Modeling and Analysis System (IMAS) in EUROfusion
  • 2020
  • In: Fusion science and technology. - : Bellwether Publishing, Ltd.. - 1536-1055 .- 1943-7641. ; 76:8, s. 894-900
  • Journal article (peer-reviewed)abstract
    • The ITER Integrated Modelling and Analysis System (IMAS) has been adopted by the EUROfusion Consortium as a platform to facilitate the analysis and verification of data from multiple tokamaks for the integration of physics codes and the validation of physics models for fusion plasma simulations. Data mapping tools have been developed to translate the tokamaks’ native data format into IMAS. The mapping required the adoption of standard coordinates, conventions on direction of vectors, signs of fields, and harmonization of physics units. The mapped data have been verified by running integrated simulations using Kepler workflows. Results of the test using IMAS data are reported here along with an assessment of the system for present and future fusion applications.
  •  
8.
  • Ardizzone, I., et al. (author)
  • Optical properties of LaNi O3 films tuned from compressive to tensile strain
  • 2020
  • In: Physical Review B. - : American Physical Society. - 2469-9969 .- 2469-9950. ; 102:15
  • Journal article (peer-reviewed)abstract
    • Materials with strong electronic correlations host remarkable - and technologically relevant - phenomena such as magnetism, superconductivity, and metal-insulator transitions. Harnessing and controlling these effects is a major challenge, on which key advances are being made through lattice and strain engineering in thin films and heterostructures, leveraging the complex interplay between electronic and structural degrees of freedom. Here we show that the electronic structure of LaNiO3 can be tuned by means of lattice engineering. We use different substrates to induce compressive and tensile biaxial epitaxial strain in LaNiO3 thin films. Our measurements reveal systematic changes of the optical spectrum as a function of strain and, notably, an increase of the low-frequency free carrier weight as tensile strain is applied. Using density functional theory (DFT) calculations, we show that this apparently counterintuitive effect is due to a change of orientation of the oxygen octahedra. The calculations also reveal drastic changes of the electronic structure under strain, associated with a Fermi surface Lifshitz transition. We provide an online applet to explore these effects. The experimental value of integrated spectral weight below 2 eV is significantly (up to a factor of 3) smaller than the DFT results, indicating a transfer of spectral weight from the infrared to energies above 2 eV. The suppression of the free carrier weight and the transfer of spectral weight to high energies together indicate a correlation-induced band narrowing and free carrier mass enhancement due to electronic correlations. Our findings provide a promising avenue for the tuning and control of quantum materials employing lattice engineering.
  •  
9.
  •  
10.
  • Fransson, Emil, 1986, et al. (author)
  • A fast neural network surrogate model for the eigenvalues of QuaLiKiz
  • 2023
  • In: Physics of Plasmas. - 1089-7674 .- 1070-664X. ; 30:12
  • Journal article (peer-reviewed)abstract
    • We introduce a neural network surrogate model that predicts the eigenvalues for the turbulent microinstabilities, based on the gyrokinetic eigenvalue solver in QuaLiKiz. The model quickly provides information about the dominant instability for specific plasma conditions, and in addition, the eigenvalues offer a pathway for extrapolating transport fluxes. The model is trained on a 5 × 106 data points large dataset based on experimental data from discharges at the joint European torus, where each data point represents a QuaLiKiz simulation. The most accurate model was obtained when the task was split into a classification task to decide if the imaginary part of eigenvalues were stable ( ≤ 0 ) or not, and a regression model to calculate the eigenvalues once the classifier predicted the unstable class.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view