SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strangeway R.) srt2:(2020-2023)"

Search: WFRF:(Strangeway R.) > (2020-2023)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alqeeq, S. W., et al. (author)
  • Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
  • 2022
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:1
  • Journal article (peer-reviewed)abstract
    • We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  •  
2.
  • Alqeeq, S. W., et al. (author)
  • Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission : A Statistical Overview
  • 2023
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Journal article (peer-reviewed)abstract
    • We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  •  
3.
  • Hasegawa, H., et al. (author)
  • Magnetic Field Annihilation in a Magnetotail Electron Diffusion Region With Electron-Scale Magnetic Island
  • 2022
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:7
  • Journal article (peer-reviewed)abstract
    • We present observations in Earth's magnetotail by the Magnetospheric Multiscale spacecraft that are consistent with magnetic field annihilation, rather than magnetic topology change, causing fast magnetic-to-electron energy conversion in an electron-scale current sheet. Multi-spacecraft analysis for the magnetic field reconstruction shows that an electron-scale magnetic island was embedded in the observed electron diffusion region (EDR), suggesting an elongated shape of the EDR. Evidence for the annihilation was revealed in the form of the island growing at a rate much lower than expected for the standard X-type geometry of the EDR, which indicates that magnetic flux injected into the EDR was not ejected from the X-point or accumulated in the island, but was dissipated in the EDR. This energy conversion process is in contrast to that in the standard EDR of a reconnecting current sheet where the energy of antiparallel magnetic fields is mostly converted to electron bulk-flow energy. Fully kinetic simulation also demonstrates that an elongated EDR is subject to the formation of electron-scale magnetic islands in which fast but transient annihilation can occur. Consistent with the observations and simulation, theoretical analysis shows that fast magnetic diffusion can occur in an elongated EDR in the presence of nongyrotropic electron effects. We suggest that the annihilation in elongated EDRs may contribute to the dissipation of magnetic energy in a turbulent collisionless plasma.
  •  
4.
  • Hwang, K-J, et al. (author)
  • Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 125:4
  • Journal article (peer-reviewed)abstract
    • On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.
  •  
5.
  • Hwang, K. -J, et al. (author)
  • Sequential Observations of Flux Transfer Events, Poleward-Moving Auroral Forms, and Polar Cap Patches
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 125:6
  • Journal article (peer-reviewed)abstract
    • We report the observation of solar wind-magnetosphere-ionosphere interactions using a series of flux transfer events (FTEs) observed by Magnetospheric MultiScale (MMS) mission located near the dayside magnetopause on 18 December 2017. The FTEs were observed to propagate duskward and either southward or slightly northward, as predicted under duskward and southward interplanetary magnetic field (IMF). The Cooling model also predicted a significant dawnward propagation of northward-moving FTEs. Near the MMS footprint, a series of poleward-moving auroral forms (PMAFs) occurred almost simultaneously with those FTEs. They propagated poleward and westward, consistent with the modeled FTE propagation. The intervals between FTEs, relatively consistent with those between PMAFs, strongly suggest a one-to-one correspondence between the dayside transients and ionospheric responses. The FTEs embedded in continuous reconnection observed by MMS and corresponding PMAFs individually occurred during persistent auroral activity recorded by an all-sky imager strongly indicate that those FTEs/PMAFs resulted from the temporal modulation of the reconnection rate during continuous reconnection. With the decay of the PMAFs associated with the FTEs, patch-like plasma density enhancements were detected to form and propagate poleward and then dawnward. Propagation to the dawn was also suggested by the Super Dual Auroral Radar Network (SuperDARN) convection and Global Positioning System (GPS) total electron content data. We relate the temporal variation of the driving solar-wind and magnetospheric mechanism to that of the high-latitude and polar ionospheric responses and estimate the response time.
  •  
6.
  • Matsui, H., et al. (author)
  • A Multi-Instrument Study of a Dipolarization Event in the Inner Magnetosphere
  • 2021
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:5
  • Journal article (peer-reviewed)abstract
    • A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on September 22, 2018. The spacecraft were located in the inner magnetosphere at L similar to 6-7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was similar to 1R(E). Gradual dipolarization or an increase of the northward component B-Z of the background field occurred on a timescale of minutes. Exploration of energization and Radiation in Geospace located 0.5 MLT eastward at a similar L shell also measured a gradual increase. The spatial scale was of the order of 1 R-E. On top of that, MMS and Probe B measured B-Z increases, and a decrease in one case, on a timescale of seconds, accompanied by large electric fields with amplitudes > several tens of mV/m. Spatial scale lengths were of the order of the ion inertial length and the ion gyroradius. The inertial term in the momentum equation and the Hall term in the generalized Ohm's law were sometimes non-negligible. These small-scale variations are discussed in terms of the ballooning/interchange instability and kinetic Alfven waves among others. It is inferred that physics of multiple scales was involved in the dynamics of this dipolarization event.
  •  
7.
  • Ergun, R. E., et al. (author)
  • Observations of Particle Acceleration in Magnetic Reconnection-driven Turbulence
  • 2020
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 898:2
  • Journal article (peer-reviewed)abstract
    • The Magnetospheric Multiscale Mission observes, in detail, charged particle heating and substantial nonthermal acceleration in a region of strong turbulence (vertical bar delta B vertical bar/vertical bar B vertical bar similar to 1, where B is the magnetic field) that surrounds a magnetic reconnection X-line. Magnetic reconnection enables magnetic field annihilation in a volume that far exceeds that of the diffusion region. The formidable magnetic field annihilation breaks into strong, intermittent turbulence with magnetic field energy as the driver. The strong, intermittent turbulence appears to generate the necessary conditions for nonthermal acceleration. It creates intense, localized currents (J) and unusually large-amplitude electric fields (E). The combination of turbulence-generated E and J results in a significant net positive mean of J center dot E, which signifies particle energization. Ion and electron heating rates are such that they experience a fourfold increase from their initial temperature. Importantly, the strong turbulence also generates magnetic holes or depletions in vertical bar B vertical bar that can trap particles. Trapping considerably increases the dwell time of a subset of particles in the turbulent region, which results in significant nonthermal particle acceleration. The direct observation of strong turbulence that is enabled by magnetic reconnection with nonthermal particle acceleration has far-reaching implications, since turbulence in plasmas is pervasive and may occupy significant volumes of the interstellar medium and intergalactic space. For example, strong turbulence from magnetic field annihilation in the supernova nebulae may dominate large volumes. As such, this observed energization process could plausibly contribute to the supply and development of the cosmic-ray spectrum.
  •  
8.
  • Gingell, I., et al. (author)
  • Statistics of Reconnecting Current Sheets in the Transition Region of Earth's Bow Shock
  • 2020
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 125:1
  • Journal article (peer-reviewed)abstract
    • We have conducted a comprehensive survey of burst mode observations of Earth's bow shock by the Magnetospheric Multiscale mission to identify and characterize current sheets associated with collisionless shocks, with a focus on those containing fast electron outflows, a likely signature of magnetic reconnection. The survey demonstrates that these thin current sheets are observed within the transition region of approximately 40% of shocks within the burst mode data set of Magnetospheric Multiscale. With only small apparent bias toward quasi-parallel shock orientations and high Alfven Mach numbers, the results suggest that reconnection at shocks is a universal process, occurring across all shock orientations and Mach numbers. On examining the distributions of current sheet properties, we find no correlation between distance from the shock, sheet width, or electron jet speed, though the relationship between electron and ion jet speed supports expectations of electron-only reconnection in the region. Furthermore, we find that robust heating statistics are not separable from background fluctuations, and thus, the primary consequence of reconnection at shocks is in relaxing the topology of the disordered magnetic field in the transition region.
  •  
9.
  • Kitamura, N., et al. (author)
  • Direct observations of energy transfer from resonant electrons to whistler-mode waves in magnetosheath of Earth
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Excitation of whistler-mode waves by cyclotron instability is considered as the likely generation process of the waves. Here, the authors show direct observational evidence for locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves in Earth's magnetosheath. Electromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA's Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.
  •  
10.
  • Lu, San, et al. (author)
  • Magnetotail reconnection onset caused by electron kinetics with a strong external driver
  • 2020
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Magnetotail reconnection plays a crucial role in explosive energy conversion in geospace. Because of the lack of in-situ spacecraft observations, the onset mechanism of magnetotail reconnection, however, has been controversial for decades. The key question is whether magnetotail reconnection is externally driven to occur first on electron scales or spontaneously arising from an unstable configuration on ion scales. Here, we show, using spacecraft observations and particle-in-cell (PIC) simulations, that magnetotail reconnection starts from electron reconnection in the presence of a strong external driver. Our PIC simulations show that this electron reconnection then develops into ion reconnection. These results provide direct evidence for magnetotail reconnection onset caused by electron kinetics with a strong external driver.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view