SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strid Åke Professor 1960 ) srt2:(2022)"

Search: WFRF:(Strid Åke Professor 1960 ) > (2022)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Palma, Carolina Falcato Fialho, et al. (author)
  • Metabolic changes in cucumber leaves are enhanced by blue light and differentially affected by UV interactions with light signalling pathways in the visible spectrum
  • 2022
  • In: Plant Science. - : Elsevier. - 0168-9452 .- 1873-2259. ; 321
  • Journal article (peer-reviewed)abstract
    • Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV. Their effects on leaf metabolites were determined using untargeted metabolomics. Blue and white growth light triggered the accumulation of compounds related to primary and secondary metabolism, including amino acids, phenolics, hormones, and compounds related to sugar metabolism and the TCA cycle. In contrast, supplementary UV in a blue or white light background decreased leaf content of amino acids, phenolics, sugars, and TCA-related compounds, without affecting abscisic acid, auxin, zeatin, or jasmonic acid levels. However, in plants grown under green light, UV-induced accumulation of phenolics, hormones (auxin, zeatin, dihydrozeatin-7-N-dihydrozeatin, jasmonic acid), amino acids, sugars, and TCA cycle-related compounds. Plants grown under red light with UV mainly showed decreased sugar content. These findings highlight the importance of the blue light component for metabolite accumulation. Also, data on interactions of UV with green light on the one hand, and blue or white light on the other, further contributes to our understanding of light quality regulation of plant metabolism.
  •  
2.
  • Asghar, Naveed, 1983-, et al. (author)
  • Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana 
  • 2022
  • In: Vaccines. - : MDPI. - 2076-393X. ; 10:10
  • Journal article (peer-reviewed)abstract
    • Flaviviruses are a threat to public health and can cause major disease outbreaks. Tick-borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment availa-ble, vaccination remains the best protective measure against TBE. Currently available TBE vaccines are based on formalin-inactivated virus produced in cell culture. These vaccines must be delivered by intramuscular injection, have a burdensome immunization schedule, and may exhibit vaccine failure in certain populations. This project aimed to develop an edible TBE vaccine to trigger a stronger immune response through oral delivery of viral antigens to mucosal surfaces. We demonstrated successful expression and post-translational processing of flavivirus structural pro-teins which then self-assembled to form virus-like particles in Nicotiana benthamiana. We performed oral toxicity tests in mice using various plant species as potential bioreactors and evaluated the immunogenicity of the resulting edible vaccine candidate. Mice immunized with the edible vaccine candidate did not survive challenge with TBE virus. Interestingly, immunization of female mice with a commercial TBE vaccine can protect their offspring against TBE virus infection. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view