SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Yanting) srt2:(2020-2023)"

Search: WFRF:(Sun Yanting) > (2020-2023)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fan, Zhaozhong, et al. (author)
  • Oxygen-Bridged Indium-Nickel Atomic Pair as Dual-Metal Active Sites Enabling Synergistic Electrocatalytic CO2 Reduction
  • 2023
  • In: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 62:7
  • Journal article (peer-reviewed)abstract
    • Single-atom catalysts offer a promising pathway for electrochemical CO2 conversion. However, it is still a challenge to optimize the electrochemical performance of dual-atom catalysts. Here, an atomic indium-nickel dual-sites catalyst bridged by an axial oxygen atom (O-In-N6-Ni moiety) was anchored on nitrogenated carbon (InNi DS/NC). InNi DS/NC exhibits superior CO selectivity with Faradaic efficiency higher than 90 % over a wide potential range from −0.5 to −0.8 V versus reversible hydrogen electrode (vs. RHE). Moreover, an industrial CO partial current density up to 317.2 mA cm−2 is achieved at −1.0 V vs. RHE in a flow cell. In situ ATR-SEIRAS combined with theory calculations reveal that the synergistic effect of In-Ni dual-sites and O atom bridge not only reduces the reaction barrier for the formation of *COOH, but also retards the undesired hydrogen evolution reaction. This work provides a feasible strategy to construct dual-site catalysts towards energy conversion.
  •  
2.
  • Li, Feng, et al. (author)
  • Coating of Phosphide Catalysts on p-Silicon by a Necking Strategy for Improved Photoelectrochemical Characteristics in Alkaline Media
  • 2021
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:17, s. 20185-20193
  • Journal article (peer-reviewed)abstract
    • The methodology of coating electrocatalysts on semiconductor substrates is critical for the catalytic performance of photoelectrochemical electrodes. A weakly bound coating leads to orders of magnitude lower efficiency and reliability compared to those required to meet the commercial demand. Herein, a facile strategy based on the hydrolysis of TiCl4 is developed to solve the coating issue. Mesoporous tungsten phosphide (WP) particles were spin-coated and affixed onto TiO2-protected planar p-Si by the formation of a TiO2 necking layer between the catalyst particles and the substrates. Under 1 sun illumination, the as-prepared WP/TiO2/Si photocathode yields a saturated current density of -35 mA cm(-2) and a durability of over 110 h with a current density over -15 mA cm(-2) at 0 V versus a reversible hydrogen electrode in a 1.0 M KOH solution, which is among the state-of-the-art performances of commercial planar Si-based photocathodes. The Kelvin probe force microscopy results suggest the successive transfer of photoelectrons from Si to TiO2 and WP. The as-formed TiO2 necking layer plays the key role in ensuring the surface catalytic activity and durability. This necking strategy is also applicable for coating other transition-metal phosphides, for example, MoP and FeP, thus offering a practical approach to meet the commercial requirement of low-cost, highly efficient, and durable photoelectrodes.
  •  
3.
  • Wu, Yunzhen, et al. (author)
  • Beyond d Orbits : Steering the Selectivity of Electrochemical CO(2)Reduction via Hybridized sp Band of Sulfur-Incorporated Porous Cd Architectures with Dual Collaborative Sites
  • 2020
  • In: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 10:45
  • Journal article (peer-reviewed)abstract
    • Electrochemical CO(2)reduction is regarded as a promising strategy for the sustainable conversion of greenhouse gas. However, it still remains a significant challenge to manipulate the selectivity and activity. Herein, amorphous and porous Cd modified by sulfur (P-Cd|S) is synthesized by a p-block sulfur dopant. In comparison with unmodified Cd metal, the P-Cd|S architecture exhibits superior activity for selective CO generation, indicating that the sulfur dopant enables a selectivity shift from formic acid to CO. The high selectivity of P-Cd|S is partially ascribed to the local alkalization and suppression of hydrogen evolution as indicated by the finite element analysis. In-depth mechanistic investigations by operando Raman, Infrared, and X-ray photoelectron spectroscopy in combination with theory calculations indicate that the covalently hybridized sp band system with dual collaborative sites (Cd(delta)(+)and S-delta(-)) gives rise to a strong interplay with CO(2)molecules and carbonaceous species, leading to the natural elimination of linear correlation among intermediates binding for d-band metals and the convenient modulation of selectivity toward CO versus HCOOH.
  •  
4.
  • Zhai, Panlong, et al. (author)
  • Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting
  • 2020
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Rational design of the catalysts is impressive for sustainable energy conversion. However, there is a grand challenge to engineer active sites at the interface. Herein, hierarchical transition bimetal oxides/sulfides heterostructure arrays interacting two-dimensional MoOx/MoS2 nanosheets attached to one-dimensional NiOx/Ni3S2 nanorods were fabricated by oxidation/hydrogenation-induced surface reconfiguration strategy. The NiMoOx/NiMoS heterostructure array exhibits the overpotentials of 38mV for hydrogen evolution and 186mV for oxygen evolution at 10mAcm(-2), even surviving at a large current density of 500mAcm(-2) with long-term stability. Due to optimized adsorption energies and accelerated water splitting kinetics by theory calculations, the assembled two-electrode cell delivers the industrially relevant current densities of 500 and 1000mAcm(-2) at record low cell voltages of 1.60 and 1.66V with excellent durability. This research provides a promising avenue to enhance the electrocatalytic performance of the catalysts by engineering interfacial active sites toward large-scale water splitting. While water splitting is an appealing carbon-neutral strategy for renewable energy generation, there is a need to develop new active, cost-effective catalysts. Here, authors prepare a nickel-molybdenum oxide/sulfide heterojunctions as bifunctional H-2 and O-2 evolution electrocatalysts.
  •  
5.
  • Zhai, Panlong, et al. (author)
  • Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting
  • 2021
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Rational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru-1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru-1/D-NiFe LDH delivers an ultralow overpotential of 18mV at 10mAcm(-2) for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru-1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O-O coupling at a Ru-O active site for oxygen evolution reaction. The Ru-1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts. Rational design of single atom catalyst is critical for efficient sustainable energy conversion. Single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets achieve superior HER and OER performance in alkaline media.
  •  
6.
  • Zhang, Yanting, et al. (author)
  • Two-Dimensional Defective Boron-Doped Niobic Acid Nanosheets for Robust Nitrogen Photofixation
  • 2021
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:11, s. 17820-17830
  • Journal article (peer-reviewed)abstract
    • Direct nitrogen photofixation is a feasible solution toward sustainable production of ammonia under mild conditions. However, the generation of active sites for solar-dirven nitrogen fixation not only limits the fundamental understanding of the relationship among light absorption, charge transfer, and catalytic efficiency but also influences the photocatalytic activity. Herein, we report two-dimensional boron-doped niobic acid nanosheets with oxygen vacancies (B-V-o-HNbO3 NSs) for efficient N-2 photofixation in the absence of any scavengers and cocatalysts. Impressively, B-V-o-HNbO3 NS as a model catalyst achieves the enhanced ammonia evolution rate of 170 mu mol g(cat)(-1) h(-1) in pure water under visible-light irradiation. The doublet coupling representing (NH4+)-N-15 in an isotopic labeling experiment and in situ infrared spectra confirm the reliable ammonia generation. The experimental analysis and density functional theory (DFT) calculations indicate that the strong synergy of boron dopant and oxygen vacancy regulates band structure of niobic acid, facilitates photogenerated charge transfer, reduces free energy barriers, accelerates reaction kinetics, and promotes the high rates of ammonia evolution. This work provides a general strategy to design active photocatalysts toward solar N-2 conversion.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view