SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Suyama Yoshihisa) srt2:(2010-2014)"

Search: WFRF:(Suyama Yoshihisa) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Källman, Thomas, et al. (author)
  • Patterns of nucleotide diversity at photoperiod related genes in the conifer Norway spruce [Picea abies (L.) (Karst)]
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:5, s. e95306-
  • Journal article (peer-reviewed)abstract
    • The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce
  •  
2.
  •  
3.
  • Parducci, Laura, et al. (author)
  • Glacial Survival of Boreal Trees in Northern Scandinavia
  • 2012
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 335:6072, s. 1083-1086
  • Journal article (peer-reviewed)abstract
    • It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trondelag in central Norway dating back similar to 10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andoya refugium in northwestern Norway as early as similar to 22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.
  •  
4.
  • Parducci, Laura, et al. (author)
  • Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia
  • 2013
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 22:13, s. 3511-3524
  • Journal article (peer-reviewed)abstract
    • Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen-based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species-specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species-specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species-specific primers to provide the most comprehensive signal from the environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view