SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Syvänen Ann Christine) srt2:(2015-2019)"

Search: WFRF:(Syvänen Ann Christine) > (2015-2019)

  • Result 1-10 of 68
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carlsson Almlöf, Jonas, et al. (author)
  • Novel risk genes for systemic lupus erythematosus predicted by random forest classification
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.
  •  
2.
  • Flannick, Jason, et al. (author)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Journal article (peer-reviewed)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
3.
  • Leonard, Dag, 1975-, et al. (author)
  • Novel gene variants associated with cardiovascular disease in systemic lupus erythematosus and rheumatoid arthritis.
  • 2018
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 77:7, s. 1063-1069
  • Journal article (peer-reviewed)abstract
    • OBJECTIVES: Patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) have increased risk of cardiovascular disease (CVD). We investigated whether single nucleotide polymorphisms (SNPs) at autoimmunity risk loci were associated with CVD in SLE and RA.METHODS: Patients with SLE (n=1045) were genotyped using the 200K Immunochip SNP array (Illumina). The allele frequency was compared between patients with and without different manifestations of CVD. Results were replicated in a second SLE cohort (n=1043) and in an RA cohort (n=824). We analysed publicly available genetic data from general population, performed electrophoretic mobility shift assays and measured cytokine levels and occurrence of antiphospholipid antibodies (aPLs).RESULTS: We identified two new putative risk loci associated with increased risk for CVD in two SLE populations, which remained after adjustment for traditional CVD risk factors. An IL19 risk allele, rs17581834(T) was associated with stroke/myocardial infarction (MI) in SLE (OR 2.3 (1.5 to 3.4), P=8.5×10-5) and RA (OR 2.8 (1.4 to 5.6), P=3.8×10-3), meta-analysis (OR 2.5 (2.0 to 2.9), P=3.5×10-7), but not in population controls. The IL19 risk allele affected protein binding, and SLE patients with the risk allele had increased levels of plasma-IL10 (P=0.004) and aPL (P=0.01). An SRP54-AS1 risk allele, rs799454(G) was associated with stroke/transient ischaemic attack in SLE (OR 1.7 (1.3 to 2.2), P=2.5×10-5) but not in RA. The SRP54-AS1 risk allele is an expression quantitative trait locus for four genes.CONCLUSIONS: The IL19 risk allele was associated with stroke/MI in SLE and RA, but not in the general population, indicating that shared immune pathways may be involved in the CVD pathogenesis in inflammatory rheumatic diseases.
  •  
4.
  • Mahajan, Anubha, et al. (author)
  • Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus.
  • 2015
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
  •  
5.
  • Manning, Alisa, et al. (author)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • In: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Journal article (peer-reviewed)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
6.
  •  
7.
  • Nordlund, Jessica, et al. (author)
  • DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
  • 2015
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 7
  • Journal article (peer-reviewed)abstract
    • Background: We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. Results: We used the methylation status of similar to 450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. Conclusions: Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
  •  
8.
  • Reid, Sarah, et al. (author)
  • High Genetic Risk Score Is Associated with Increased Organ Damage in SLE
  • 2017
  • In: Arthritis & Rheumatology. - : John Wiley & Sons. - 2326-5191 .- 2326-5205. ; 69
  • Journal article (other academic/artistic)abstract
    • Background/Purpose: Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease with a complex genetic etiology. Over 80 risk genes for SLE have been identified and some genetic variants have demonstrated association with specific disease manifestations, such as STAT4 and nephritis. The overall effect of a patient’s hereditary risk factors on disease severity has so far not been studied. We therefore assessed the relationship between high genetic risk and development of organ damage in SLE.Methods: Patients with SLE, who met at least 4 ACR criteria (n = 1012), were genotyped using a 200K Immunochip SNP Array (Illumina). A genetic risk score (GRS) was assigned to each patient based on the single nucleotide polymorphisms (SNPs) which in previous studies have shown association (p<5×10-8) with SLE according to Morris, et al (Nat Genet, 2016. 48(8): p. 940-6). For 32 loci the SLE GWAS SNP was available on the ImmunoChip. For each SNP, the natural logarithm of the odds ratio (OR) for SLE susceptibility was multiplied by the number of risk alleles in each individual. The sum of all products for each patient was defined as the GRS. Information regarding organ damage according to Systemic Lupus International Collaborating Clinics / American College of Rheumatology Damage Index (SLICC-DI), disease manifestations, antibody profile, medication, current disease activity, age at diagnosis and sex was retrieved from medical records. Statistical analyzes were performed using Statistica 13.2 (Statsoft).Results: In an ordinal regression model, with SLICC-DI (0, 1, 2, 3, 4 and >4 points) as outcome and age and GRS as independent variables, an association was found between GRS and SLICC-DI (OR1.16 (1.03-1.31), p=0.015). The relationship was more pronounced for patients under 60 years of age (OR1.30 (1.11-1.52) p=7.1×10-4). Using a linear regression model, a negative relationship was observed between GRS and age at diagnosis (β = -0.13, p=1.5×10-5).When analyzing the 11 SLE criteria (ACR-82) using a logistic regression model associations were observed between GRS and nephritis (OR 1.26 (1.09-1.45), p=0.0015), the immunological criteria (OR 1.31 (1.13-1.51), p = 3.2×10-4) and arthritis (OR 0.84 (0.71-1.00), p=0.044). A high GRS was also associated with presence of anti-dsDNA (OR 1.37 (1.15-1.62), p=9.4×10-7) and low complement levels (OR 1.32 (1.03-1.68), p=0.044). No association was observed between GRS and disease activity at the time of follow-up and there was no difference in GRS between men and women with SLE.Conclusion: In patients with SLE, there is an association between a high genetic risk score and early disease onset. In addition, patients with high genetic risk scores have a higher risk of developing permanent organ damage compared to individuals with fewer risk genes. Our findings indicate that genetic profiling of patients with SLE may provide a tool for predicting severity of the disease.
  •  
9.
  •  
10.
  • Tay, Nicole, et al. (author)
  • Allele-Specific Methylation of SPDEF : A Novel Moderator of Psychosocial Stress and Substance Abuse
  • 2019
  • In: American Journal of Psychiatry. - : AMER PSYCHIATRIC PUBLISHING, INC. - 0002-953X .- 1535-7228. ; 176:2, s. 146-155
  • Journal article (peer-reviewed)abstract
    • Objective: Psychosocial stress is a key risk factor for substance abuse among adolescents. Recently, epigenetic processes such as DNA methylation have emerged as potential mechanisms that could mediate this relationship. The authors conducted a genome-wide methylation analysis to investigate whether differentially methylated regions are associated with psychosocial stress in an adolescent population.Methods: A methylome-wide analysis of differentially methylated regions was used to examine a sample of 1,287 14-year-old adolescents (50.7% of them female) from the European IMAGEN study. The Illumina 450k array was used to assess DNA methylation, pyrosequencing was used for technical replication, and linear regression analyses were used to identify associations with psychosocial stress and substance use (alcohol and tobacco). Findings were replicated by pyrosequencing a test sample of 413 participants from the IMAGEN study.Results: Hypermethylation in the sterile alpha motif/pointed domain containing the ETS transcription factor (SPDEF) gene locus was associated with a greater number of stressful life events in an allele-dependent way. Among individuals with the minor G-allele, SPDEF methylation moderated the association between psychosocial stress and substance abuse. SPDEF methylation interacted with lifetime stress in gray matter volume in the right cuneus, which in turn was associated with the frequency of alcohol and tobacco use. SPDEF was involved in the regulation of trans-genes linked to substance use.Conclusions: Taken together, the study findings describe a novel epigenetic mechanism that helps explain how psychosocial stress exposure influences adolescent substance abuse.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 68
Type of publication
journal article (62)
doctoral thesis (4)
conference paper (1)
research review (1)
Type of content
peer-reviewed (56)
other academic/artistic (12)
Author/Editor
Syvänen, Ann-Christi ... (34)
Syvänen, Ann-Christi ... (32)
Rönnblom, Lars (23)
Sandling, Johanna K. (20)
Eloranta, Maija-Leen ... (15)
Lind, Lars (12)
show more...
Nordlund, Jessica (12)
Imgenberg-Kreuz, Jul ... (12)
Gunnarsson, Iva (11)
Svenungsson, Elisabe ... (11)
Leonard, Dag, 1975- (11)
Nordmark, Gunnel (11)
Ingelsson, Erik (10)
Axelsson, Tomas (8)
Sjöwall, Christopher (8)
Bengtsson, Anders A. (8)
Groop, Leif (7)
Alexsson, Andrei (7)
Salomaa, Veikko (7)
Forestier, Erik (7)
McCarthy, Mark I (7)
Mangino, Massimo (7)
Rantapää-Dahlqvist, ... (7)
Metspalu, Andres (7)
Jönsen, Andreas (6)
Tandre, Karolina (6)
Carlsson Almlöf, Jon ... (6)
Johansson, Åsa (6)
Raine, Amanda (6)
Gieger, Christian (6)
Mahajan, Anubha (6)
Almlöf, Jonas Carlss ... (6)
Lyssenko, Valeriya (5)
Wareham, Nicholas J. (5)
Fall, Tove (5)
Kuusisto, Johanna (5)
Laakso, Markku (5)
Langenberg, Claudia (5)
Boehnke, Michael (5)
Mohlke, Karen L (5)
Tuomilehto, Jaakko (5)
Locke, Adam E. (5)
Peters, Annette (5)
Strauch, Konstantin (5)
Kaprio, Jaakko (5)
Dahlberg, Johan (5)
Gustafsson, Stefan (5)
Palmer, Colin N. A. (5)
Karpe, Fredrik (5)
Hofman, Albert (5)
show less...
University
Uppsala University (66)
Karolinska Institutet (32)
Umeå University (20)
Lund University (15)
Linköping University (8)
University of Gothenburg (7)
show more...
Stockholm University (3)
Örebro University (3)
Royal Institute of Technology (2)
Högskolan Dalarna (2)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (68)
Research subject (UKÄ/SCB)
Medical and Health Sciences (66)
Natural sciences (8)
Engineering and Technology (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view