SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tabrizi R) srt2:(2006-2009)"

Search: WFRF:(Tabrizi R) > (2006-2009)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björkqvist, Maria, et al. (author)
  • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease.
  • 2008
  • In: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 205, s. 1869-1877
  • Journal article (peer-reviewed)abstract
    • Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.
  •  
2.
  • Dalrymple, Annette, et al. (author)
  • Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates
  • 2007
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:7, s. 2833-2840
  • Journal article (peer-reviewed)abstract
    • Huntington's disease (HD) causes widespread CNS changes and systemic abnormalities including endocrine and immune dysfunction. HD biomarkers are needed to power clinical trials of potential treatments. We used multiplatform proteomic profiling to reveal plasma changes with HD progression. Proteins of interest were evaluated using immunoblotting and ELISA in plasma from 2 populations, CSF and R6/2 mice. The identified proteins demonstrate neuroinflammation in HD and warrant further investigation as possible biomarkers.
  •  
3.
  •  
4.
  •  
5.
  • Shalchian-Tabrizi, Kamran, et al. (author)
  • Heterotachy processes in rhodophyte-derived secondhand plastid genes : Implications for addressing the origin and evolution of dinoflagellate plastids
  • 2006
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 23:8, s. 1504-1515
  • Journal article (peer-reviewed)abstract
    • Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containin- plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view