SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tassan Got L) srt2:(2010-2014)"

Search: WFRF:(Tassan Got L) > (2010-2014)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Antonov, A. N., et al. (author)
  • The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study
  • 2011
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087. ; 637:1, s. 60-76
  • Journal article (peer-reviewed)abstract
    • The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. (C) 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Ledoux, X., et al. (author)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2014
  • In: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 353-356
  • Journal article (peer-reviewed)abstract
    • The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in U-238 for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
  •  
3.
  • Tarrío, Diego, et al. (author)
  • Fission Fragment Angular Distribution of Th-232(n,f) at the CERN n_TOF Facility
  • 2014
  • In: Nuclear Data Sheets. - Univ Santiago de Compostela, Santiago De Compostela, Spain. [Leong, L. S.; Audouin, L.; Tassan-Got, L.; Lederer, C.] IPN, CNRS, IN2P3, Orsay, France. [Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Becares, V.; Cano-Ott, D.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.] CIEMAT, E-28040 Madrid, Spain. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Belloni, F.; Berthoumieux, E.; Bosnar, D.; Chiaveri, E.; Fraval, K.; Gunsing, F.] CEA Saclay, Irfu, F-91191 Gif Sur Yvette, France. [Berthoumieux, E.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Roman, F.; Rubbia, C.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Billowes, J.; Ware, T.; Wright, T. J.] Univ Manchester, Manchester, Lancs, England. [Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Calvino, F.; Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Carrapico, C.; Goncalves, I. F.; Sarmento, R.; Vaz, P.] Univ Tecn Lisboa, Inst Super Tecn, Inst Tecnol Nucl, P-1096 Lisbon, Portugal. [Cortes-Giraldo, M. A.; Praena, J.; Quesada, J. M.] Univ Seville, Seville, Spain. [Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Dzysiuk, N.; Mastinu, P. F.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Milan, Italy. [Eleftheriadis, C.; Manousos, A.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Ganesan, S.; Gurusamy, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Griesmayer, E.; Jericha, E.; Leeb, H.; Weiss, C.] Vienna Univ Technol, Inst Atom, Vienna, Austria. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Kaeppeler, F.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Koehler, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lederer, C.; Pavlik, A.; Wallner, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Massimi, C.; Mingrone, F.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Mengoni, A.; Ventura, A.] Agenzia Nazl Nuove Tecnol, Eenergia & Sviluppo Econ Sostenibile ENEA, Bologna, Italy. [Milazzo, P. M.] Ist Nazl Fis Nucl, Trieste, Italy. [Mirea, M.; Roman, F.] Horia Hulubei Natl Inst Phys & Nucl Engn, IFIN HH, Bucharest, Romania. [Mondalaers, W.; Plompen, A.; Schillebeeckx, P.] European Commiss JRC, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy. : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 35-37
  • Journal article (peer-reviewed)abstract
    • The angular distribution of fragments emitted in neutron-induced fission of Th-232 was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the Th-232(n,f) between fission threshold and 100 MeV are presented here.
  •  
4.
  • Tarrío, Diego, et al. (author)
  • Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 743, s. 79-85
  • Journal article (peer-reviewed)abstract
    • A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n_TOF) facility at CERN. The detectors and the samples were tilted 45 degrees with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the Th-232(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.
  •  
5.
  • Boutoux, G., et al. (author)
  • The SOFIA Experiment
  • 2013
  • In: Physics Procedia. - : Elsevier BV. - 1875-3884 .- 1875-3892. ; 47, s. 166-171
  • Conference paper (peer-reviewed)abstract
    • SOFIA (Study On FIssion with Aladin) is an innovative experimental programme on nuclear fission carried out at GSI. In August 2012, we used relativistic secondary beams of neutron-deficient actinides and pre-actinides provided by the FRS and studied their fission, induced by electromagnetic interaction, in inverse kinematics. This experiment will provide for the first time complete isotopic yields (nuclear charge and mass) for both fragments over a broad range of fissioning nuclei from 238Np down to 183Hg. In this article, we discuss the experimental set-up and present promising preliminary results.
  •  
6.
  • Giot, L., et al. (author)
  • Isotopic production cross sections of the residual nuclei in spallation reactions induced by 136Xe projectiles on proton at 500 A MeV
  • 2013
  • In: Nuclear Physics A. - : Elsevier BV. - 0375-9474. ; 899, s. 116-132
  • Journal article (peer-reviewed)abstract
    • Around 270 medium-mass residual nuclei, formed in spallation reactions induced by 136Xe projectiles impinging on a liquid hydrogen target at 500 A MeV, have been unambiguously identified at GSI using the magnetic spectrometer FRS. The individual production cross sections and the longitudinal momentum distributions have been determined with high accuracy. These data represent an important constraint for theoretical models describing spallation reactions. © 2013 Elsevier B.V.
  •  
7.
  • Pellereau, E., et al. (author)
  • SOFIA: An innovative setup to measure complete isotopic yield of fission fragments
  • 2013
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 62
  • Conference paper (peer-reviewed)abstract
    • We performed an experiment dedicated to the accurate isotopic yield measurement of fission fragments over the whole range. SOFIA exploits the inverse kinematics technique: using heavy ion beams at relativistic energies, fission is induced by Coulomb excitation in a high-Z target. The fragments are emitted forward and both of them are identified in charge and mass. The setup will be presented, as well as preliminary spectra. © Owned by the authors, published by EDP Sciences, 2013.
  •  
8.
  • Rodriguez-Sanchez, J. L., et al. (author)
  • Fission of highly excited nuclei investigated in complete kinematic measurements
  • 2013
  • In: EPJ Web of Conferences. - : EDP Sciences. - 2101-6275 .- 2100-014X. ; 62
  • Conference paper (peer-reviewed)abstract
    • Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. © Owned by the authors, published by EDP Sciences, 2013.
  •  
9.
  • Rodriguez-Sanchez, J. L., et al. (author)
  • Proton-induced fission cross sections on Pb-208 at high kinetic energies
  • 2014
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993. ; 90:6, s. Art. no. 064606-
  • Journal article (peer-reviewed)abstract
    • Total fission cross sections of Pb-208 induced by protons have been determined at 370A, 500A, and 650A MeV. The experiment was performed at GSI Darmstadt where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to determine these cross sections with an uncertainty below 6%. This result was achieved by an accurate beam selection and registration of both fission fragments in coincidence which were also clearly distinguished from other reaction channels. These data solve existing discrepancies between previous measurements, providing new values for the Prokofiev systematics. The data also allow us to investigate the fission process at high excitation energies and small deformations. In particular, some fundamental questions about fission dynamics have been addressed, which are related to dissipative and transient time effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view