SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ten Kate M.) srt2:(2020-2024)"

Search: WFRF:(Ten Kate M.) > (2020-2024)

  • Result 1-10 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Coomans, Emma M., et al. (author)
  • Genetically identical twin-pair difference models support the amyloid cascade hypothesis
  • 2023
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:9, s. 3735-3746
  • Journal article (peer-reviewed)abstract
    • The amyloid cascade hypothesis has strongly impacted the Alzheimer's disease research agenda and clinical trial designs over the past decades, but precisely how amyloid-β pathology initiates the aggregation of neocortical tau remains unclear. We cannot exclude the possibility of a shared upstream process driving both amyloid-β and tau in an independent manner instead of there being a causal relationship between amyloid-β and tau. Here, we tested the premise that if a causal relationship exists, then exposure should be associated with outcome both at the individual level as well as within identical twin-pairs, who are strongly matched on genetic, demographic and shared environmental background. Specifically, we tested associations between longitudinal amyloid-β PET and cross-sectional tau PET, neurodegeneration and cognitive decline using genetically identical twin-pair difference models, which provide the unique opportunity of ruling out genetic and shared environmental effects as potential confounders in an association. We included 78 cognitively unimpaired identical twins with [18F]flutemetamol (amyloid-β)-PET, [18F]flortaucipir (tau)-PET, MRI (hippocampal volume) and cognitive data (composite memory). Associations between each modality were tested at the individual level using generalized estimating equation models, and within identical twin-pairs using within-pair difference models. Mediation analyses were performed to test for directionality in the associations as suggested by the amyloid cascade hypothesis. At the individual level, we observed moderate-to-strong associations between amyloid-β, tau, neurodegeneration and cognition. The within-pair difference models replicated results observed at the individual level with comparably strong effect sizes. Within-pair differences in amyloid-β were strongly associated with within-pair differences in tau (β = 0.68, P < 0.001), and moderately associated with within-pair differences in hippocampal volume (β = -0.37, P = 0.03) and memory functioning (β = -0.57, P < 0.001). Within-pair differences in tau were moderately associated with within-pair differences in hippocampal volume (β = -0.53, P < 0.001) and strongly associated with within-pair differences in memory functioning (β = -0.68, P < 0.001). Mediation analyses showed that of the total twin-difference effect of amyloid-β on memory functioning, the proportion mediated through pathways including tau and hippocampal volume was 69.9%, which was largely attributable to the pathway leading from amyloid-β to tau to memory functioning (proportion mediated, 51.6%). Our results indicate that associations between amyloid-β, tau, neurodegeneration and cognition are unbiased by (genetic) confounding. Furthermore, effects of amyloid-β on neurodegeneration and cognitive decline were fully mediated by tau. These novel findings in this unique sample of identical twins are compatible with the amyloid cascade hypothesis and thereby provide important new knowledge for clinical trial designs.
  •  
2.
  • Hong, S. J., et al. (author)
  • TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels
  • 2021
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:10, s. 1628-1640
  • Journal article (peer-reviewed)abstract
    • Introduction Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. Methods We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. Results We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. Discussion Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.
  •  
3.
  • Delvenne, A., et al. (author)
  • Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:3, s. 807-820
  • Journal article (peer-reviewed)abstract
    • Background Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. Methods Individuals were classified based on CSF amyloid beta (A beta)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. Results A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. Conclusion The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
  •  
4.
  • Neumann, A., et al. (author)
  • Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 1990-1999
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (beta-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
  •  
5.
  • Shi, L., et al. (author)
  • Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:8, s. 3359-3364
  • Journal article (peer-reviewed)abstract
    • IntroductionThis study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. MethodsUsing the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). ResultsAT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DiscussionThis study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
  •  
6.
  • Tijms, B. M., et al. (author)
  • Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics
  • 2020
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143, s. 3776-3792
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n=425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n=127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P>0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P<0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P=0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P=0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy.
  •  
7.
  •  
8.
  • Neumann, A., et al. (author)
  • Exome-wide rare variant analysis of Alzheimer's disease biomarkers: The EMIF-AD multimodal biomarker discovery study
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Alzheimer's disease (AD) biomarkers show promise in aiding diagnosis and prediction by representing several neurodegenerative processes, such as synaptic dysfunction, neuronal injury, inflammation or neuronal loss. Biomarkers could also aid in the discovery of AD-related genes and inform which biological mechanisms underlie a genetic risk effect. We performed an exome-wide rare variant analysis of six biomarkers measured in cerebrospinal fluid (β-amyloid, total tau/phosphorylated tau, NFL, YKL-40, and Neurogranin) and hippocampal volume as measured by MRI. The aim was to discover genes associated with these indicators and test whether they mediate genetic effects on AD. METHOD: We performed the exome-wide analysis in two studies: the EMIF-AD study and ADNI. Whole exome sequencing and biomarker information data was available for 505 (CSF biomarkers) and 508 (hippocampal volume) participants with AD, mild cognitive impairment and controls. We applied a principal component (PC) analysis to derive combinations of CSF biomarkers, which represent statistically independent biological processes. We then tested whether rare (MAF < 1%) variants in 13,799 protein-coding genes associate with the PCs or hippocampal volume using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on dementia symptoms with a SMUT test. RESULT: One PC loaded on NFL and YKL40, indicators of neuronal injury and inflammation. Three genes were associated with this PC: IFFO1, NLRC3, and DTNB. Mediation tests suggested, that these genes also affect dementia symptoms by increasing susceptibility to neuronal injury and inflammation. We also observed an association between a PC loading on Neurogranin and GABBR2 and CASZ1, but no mediation effects. Furthermore, BUB1B was associated with left hippocampal volume. CONCLUSION: The results suggest that rare variants in IFFO1, DTNB and NLRC3 impact neuronal injury and inflammation, by potentially altering cytoskeleton structure, impairing repair abilities and disinhibition of immune pathways, which then could lead to dementia symptoms. Furthermore, the findings support a role of BUB1B in hippocampal atrophy. Curiously, this gene has previously been linked to longevity and memory in animal models. This study suggests a similar influence in humans and proposes a pathway through hippocampal neurodegeneration. © 2021 the Alzheimer's Association.
  •  
9.
  • Neumann, Alexander, et al. (author)
  • Multivariate GWAS of Alzheimer's disease CSF biomarker profiles implies GRIN2D in synaptic functioning.
  • 2023
  • In: Genome medicine. - 1756-994X. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences.We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n=205 controls, n=546 mild cognitive impairment, n=222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects.Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analysesof the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers.These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.
  •  
10.
  • Shi, Liu, et al. (author)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • In: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Journal article (peer-reviewed)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view