SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Togano Y.) srt2:(2015-2019)"

Search: WFRF:(Togano Y.) > (2015-2019)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Reifarth, R., et al. (author)
  • Nuclear astrophysics with radioactive ions at FAIR
  • 2016
  • In: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 665:1
  • Conference paper (peer-reviewed)abstract
    • The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process beta-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
  •  
2.
  • Chakraborty, S., et al. (author)
  • Ground-state configuration of neutron-rich Al-35 via Coulomb breakup
  • 2017
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 96:3, s. 1965-
  • Journal article (peer-reviewed)abstract
    • The ground-state configuration of Al-35 has been studied via Coulomb dissociation (CD) using the LAND-FRS setup (GSI, Darmstadt) at a relativistic energy of similar to 403 MeV/nucleon. The measured inclusive differential CD cross section for Al-35, integrated up to 5.0 MeV relative energy between the Al-34 core and the neutron using a Pb target, is 78(13) mb. The exclusive measured CD cross section that populates various excited states of 34Al is 29(7) mb. The differential CD cross section of Al-35 -> Al-34 + n has been interpreted in the light of a direct breakup model, and it suggests that the possible ground-state spin and parity of Al-35 could be, tentatively, 1/2+ or 3/2(+) or 5/2(+). The valence neutrons, in the ground state of Al-35, may occupy a combination of either l = 3,0 or l = 1,2 orbitals coupled with the Al-34 core in the ground and isomeric state(s), respectively. This hints of a particle-hole configuration of the neutron across the magic shell gaps at N = 20,28 which suggests narrowing the magic shell gap. If the 5/2+ is the ground-state spin-parity of Al-35 as suggested in the literature, then the major ground-state configuration of Al-35 is a combination of Al-34(g. s.; 4(-)) circle times upsilon(p3/2) and Al-34(isomer; 1(+)) circle times upsilon(d3/2) states. The result from this experiment has been compared with that from a previous knockout measurement and a calculation using the SDPF-M interaction.
  •  
3.
  • Atar, L., et al. (author)
  • Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength
  • 2018
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 120:5
  • Journal article (peer-reviewed)abstract
    • Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type OA(p,2p)NA-1 have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
  •  
4.
  • Datta, U., et al. (author)
  • Direct experimental evidence for a multiparticle-hole ground state configuration of deformed Mg-33
  • 2016
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 94:3
  • Journal article (peer-reviewed)abstract
    • The first direct experimental evidence of a multiparticle-hole ground state configuration of the neutron-rich Mg-33 isotope has been obtained via intermediate energy (400 A MeV) Coulomb dissociation measurement. The major part similar to(70 +/- 13)% of the cross section is observed to populate the excited states of Mg-32 after the Coulomb breakup of Mg-33. The shapes of the differential Coulomb dissociation cross sections in coincidence with different core excited states favor that the valence neutron occupies both the s(1/2) and p(3/2) orbitals. These experimental findings suggest a significant reduction and merging of sd-pf shell gaps at N similar to 20 and 28. The ground state configuration of Mg-33 is predominantly a combination of Mg-32(3.0,3.5MeV; 2(-), 1(-)) circle times nu(s1/2), Mg-32(2.5MeV; 2(+)) circle times nu(p3/2), and Mg-32(0; 0(+)) circle times nu(p3/2). The experimentally obtained quantitative spectroscopic information for the valence neutron occupation of the s and p orbitals, coupled with different core states, is in agreement with Monte Carlo shell model (MCSM) calculation using 3 MeV as the shell gap at N = 20.
  •  
5.
  • Heine, M., et al. (author)
  • Determination of the neutron-capture rate of C-17 for r-process nucleosynthesis
  • 2017
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 95:1, s. Article no 014613 -
  • Journal article (peer-reviewed)abstract
    • With the (RB)-B-3-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of C-18 at a projectile energy around 425A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of C-17 into the ground state of C-18. Those data have been used to constrain theoretical calculations for transitions populating excited states in C-18. This allowed to derive the astrophysical cross section sigma(n gamma)*. accounting for the thermal population of C-17 target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T-9
  •  
6.
  • Rahaman, A., et al. (author)
  • Coulomb breakup of neutron-rich Na-29,Na-30 isotopes near the island of inversion
  • 2017
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:4, s. 045101-
  • Journal article (peer-reviewed)abstract
    • First results are reported on the ground state configurations of the neutron-rich Na-29,Na-30 isotopes, obtained via Coulomb dissociation (CD) measurements. The invariant mass spectra of these nuclei have been obtained through measurement of the four-momenta of all decay products after Coulomb excitation of those nuclei on a Pb-208 target at energies of 400-430 MeV/nucleon using the FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated inclusive CD cross-sections (CD) of 89 (7) mb and 167 (13) mb for one neutron removal from Na-29 and Na-30, respectively, have been extracted up to an excitation energy of 10 MeV. The major part of one neutron removal, CD cross-sections of those nuclei populate the core, in its ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of Na-29 (3/2(+)) and Na-30 (2(+)) is the d-orbital with a small contribution from the s-orbital, which are coupled with the ground state of the core. One of the major components of the ground state configurations of these nuclei are Na-28(gs)(1(+)) circle times v(s,d) and Na-29(gs)(3/2(+)) circle times v(s,d), respectively. The ground state spin and parity of these nuclei obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the s and d orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with shell model calculation using the MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in Na-30.
  •  
7.
  • Röder, M., et al. (author)
  • Coulomb dissociation of 20,21 N
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:6
  • Journal article (peer-reviewed)abstract
    • Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is up to a factor of 5 higher at T
  •  
8.
  • Thies, Ronja, 1987, et al. (author)
  • Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
  • 2016
  • In: Physical Review C - Nuclear Physics. - 2469-9985 .- 2469-9993 .- 0556-2813. ; 93:5
  • Journal article (peer-reviewed)abstract
    • Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from C10,12-18 and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic C10,12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the epax code is not able to describe the data satisfactorily. Using abrabla07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease abrabla07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
  •  
9.
  • Diaz Fernandez, Paloma, 1983, et al. (author)
  • Quasifree (p, pN) scattering of light neutron-rich nuclei near N=14
  • 2018
  • In: Physical Review C. - 2469-9985 .- 2469-9993. ; 97:2
  • Journal article (peer-reviewed)abstract
    • Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The (RB)-B-3 collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable C-12 beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p, pn) and (p, 2p) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N = 14 to N = 15. Method: The structure of the projectiles O-23, O-22, and N-21 has been studied simultaneously via (p, pn) and (p, 2p) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the (RB)-B-3-LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p, pn) and (p, 2p) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p, pn) channels, indications of a change in the structure of these nuclei moving from N = 14 to N = 15 have been observed, i.e., from the 0d(5/2) shell to the 1s(1/2). This supports previous observations of a subshell closure at N = 14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes.
  •  
10.
  • Holl, M., et al. (author)
  • Quasi-free neutron and proton knockout reactions from light nuclei in a wide neutron-to-proton asymmetry range
  • 2019
  • In: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 795, s. 682-688
  • Journal article (peer-reviewed)abstract
    • The quasi-free scattering reactions 11C(p,2p) and 10,11,12C(p,pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p,2p) and 12C(p,pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p,2p) are found to be 'significantly smaller than for (p,pn) reactions for all investigated nuclei.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view