SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tong Rui) srt2:(2023)"

Search: WFRF:(Tong Rui) > (2023)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Liu, Wei, et al. (author)
  • The Synthesis of a Multiple D-A Conjugated Macrocycle and Its Application in Organic Photovoltaic
  • 2023
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773.
  • Journal article (peer-reviewed)abstract
    • As a novel class of materials, D-A conjugated macrocycles hold significant promise for chemical science. However, their potential in photovoltaic remains largely untapped due to the complexity of introducing multiple donor and acceptor moieties into the design and synthesis of cyclic pi-conjugated molecules. Here, we report a multiple D-A ring-like conjugated molecule (RCM) via the coupling of dimer molecule DBTP-C3 as a template and thiophenes in high yields. RCM exhibits a narrow optical gap (1.33 eV) and excellent thermal stability, and shows a remarkable photoluminescence yield (phi PL) of 11.1 % in solution, much higher than non-cyclic analogues. Organic solar cell (OSC) constructed with RCM as electron acceptor shows efficient charge separation at donor-acceptor band offsets and achieves a power conversion efficiency (PCE) of 14.2 %-approximately fourfold higher than macrocycle-based OSCs reported so far. This is partly due to low non-radiative voltage loss down to 0.20 eV and a high electroluminescence yield (phi EL) of 4x10-4. Our findings emphasize the potential of D-A cyclic conjugated molecules in advancing organic photovoltaic technology. A multiple D-A ring-like conjugated molecule, RCM was synthesized via a template-directed process. RCM inherits the superior photovoltaic properties characteristic of D-A linear molecules, including a narrow optical gap and effective charge transfer. Importantly, RCM demonstrates reduced non-radiative losses, attributable to its minimized vibration.+image
  •  
2.
  • Ren, Luyao, et al. (author)
  • Quartet DNA reference materials and datasets for comprehensively evaluating germline variant calling performance
  • 2023
  • In: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome.RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data.CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view