SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Torbert R.B.) srt2:(2010-2014)"

Search: WFRF:(Torbert R.B.) > (2010-2014)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Farrugia, C. J., et al. (author)
  • "Crater" flux transfer events : Highroad to the X line?
  • 2011
  • In: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 116:2
  • Journal article (peer-reviewed)abstract
    • We examine Cluster observations of a so-called magnetosphere "crater FTE," employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to similar to 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
  •  
2.
  • Matsui, H., et al. (author)
  • Characteristics of storm time electric fields in the inner magnetosphere derived from Cluster data
  • 2010
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A11215-
  • Journal article (peer-reviewed)abstract
    • Storm-time electric fields in the inner magnetosphere measured by Cluster are reported in this study. First, we show two events around the time when Dst index is at a minimum. The electric field possibly related to subauroral ion drifts and/or undershielding is measured inside the inner edge of the electron plasma sheet in the eveningside. For the second event observed in the nightside, the electric field is partly related to dipolarization and is considered as inductive. An electric field without coincident magnetic signatures is also observed. Spatial coherence of the electric field is not large when we check multispacecraft data. It is inferred that the electric field in the magnetotail penetrates inside the region 1 current, while it is not clear about the electric field within the region 2 current from our data. Then superposed epoch analyses using 71 storms are performed. Electric fields at R = 3.5-6R(E) and less than 25 degrees of magnetic latitudes are enhanced around the minimum Dst at all magnetic local times. Electric fields during the recovery phase decay on a time scale shorter than that of Dst index, which could be interpreted in terms of the relation between electric field and ring current during that storm phase. AC electric fields are generally larger than DC electric fields, indicating that the former component might play some role in accelerating ring current particles. These results will be useful to update our empirical electric field model.
  •  
3.
  • Matsui, H., et al. (author)
  • Multi-spacecraft observations of small-scale fluctuations in density and fields in plasmaspheric plumes
  • 2012
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 30:3, s. 623-637
  • Journal article (peer-reviewed)abstract
    • In this event study, small-scale fluctuations in plasmaspheric plumes with time scales of similar to 10 s to minutes in the spacecraft frame are examined. In one event, plasmaspheric plumes are observed by Cluster, while IMAGE measured density enhancement at a similar location. Fluctuations in density exist in plumes as detected by Cluster and are accompanied by fluctuations in magnetic fields and electric fields. Magnetic fluctuations are transverse and along the direction of the plumes. The E/B ratio is smaller than the Alfv,n velocity. Another similar event is briefly presented. We then consider physical properties of the fluctuations. Alfv,n mode modulated by the feedback instability is one possibility, although non-local generation is likely. It is hard to show that the fluctuations represent a fast mode. Interchange motion is possible due to the consistency between measurements and expectations. The energy source could be a pressure or density gradient in plasmaspheric plumes. When more events are accumulated so that statistical analysis becomes feasible, this type of study will be useful to understand the time evolution of plumes.
  •  
4.
  • Matsui, H., et al. (author)
  • Revision of empirical electric field modeling in the inner magnetosphere using Cluster data
  • 2013
  • In: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:7, s. 4119-4134
  • Journal article (peer-reviewed)abstract
    • Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 22.662 mV/m; K-p<1, 1K(p)<2, 2K(p)<3, 3K(p)<4, 4K(p)<5, and K(p)4(+). Patterns consist of one set of data and processing for smaller activities, and another for higher activities. As activity increases, the skewed potential contour related to the partial ring current appears on the nightside. With the revised analysis, we find that the skewed potential contours get clearer and potential contours get denser on the nightside and morningside. Since the fluctuating components are not negligible, standard deviations from the modeled values are included in the model. In this study, we perform validation of the derived model more extensively. We find experimentally that the skewed contours are located close to the last closed equipotential, consistent with previous theories. This gives physical context to our model and serves as one validation effort. As another validation effort, the derived results are compared with other models/measurements. From these comparisons, we conclude that our model has some clear advantages over the others.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view