SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tratsiakovich Y) srt2:(2015-2019)"

Sökning: WFRF:(Tratsiakovich Y) > (2015-2019)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Mahdi, A, et al. (författare)
  • Altered Purinergic Receptor Sensitivity in Type 2 Diabetes-Associated Endothelial Dysfunction and Up₄A-Mediated Vascular Contraction
  • 2018
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 19:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Purinergic signaling may be altered in diabetes accounting for endothelial dysfunction. Uridine adenosine tetraphosphate (Up4A), a novel dinucleotide substance, regulates vascular function via both purinergic P1 and P2 receptors (PR). Up4A enhances vascular contraction in isolated arteries of diabetic rats likely through P2R. However, the precise involvement of PRs in endothelial dysfunction and the vasoconstrictor response to Up4A in diabetes has not been fully elucidated. We tested whether inhibition of PRs improved endothelial function and attenuated Up4A-mediated vascular contraction using both aortas and mesenteric arteries of type 2 diabetic (T2D) Goto Kakizaki (GK) rats vs. control Wistar (WT) rats. Endothelium-dependent (EDR) but not endothelium-independent relaxation was significantly impaired in both aortas and mesenteric arteries from GK vs. WT rats. Non-selective inhibition of P1R or P2R significantly improved EDR in aortas but not mesenteric arteries from GK rats. Inhibition of A1R, P2X7R, or P2Y6R significantly improved EDR in aortas. Vasoconstrictor response to Up4A was enhanced in aortas but not mesenteric arteries of GK vs. WT rats via involvement of A1R and P2X7R but not P2Y6R. Depletion of major endothelial component nitric oxide enhanced Up4A-induced aortic contraction to a similar extent between WT and GK rats. No significant differences in protein levels of A1R, P2X7R, and P2Y6R in aortas from GK and WT rats were observed. These data suggest that altered PR sensitivity accounts for endothelial dysfunction in aortas in diabetes. Modulating PRs may represent a potential therapy for improving endothelial function.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Tratsiakovich, Y, et al. (författare)
  • Inhibition of Rho kinase protects from ischaemia-reperfusion injury via regulation of arginase activity and nitric oxide synthase in type 1 diabetes
  • 2017
  • Ingår i: Diabetes & vascular disease research. - : SAGE Publications. - 1752-8984 .- 1479-1641. ; 14:3, s. 236-245
  • Tidskriftsartikel (refereegranskat)abstract
    • RhoA/Rho-associated kinase and arginase are implicated in vascular complications in diabetes. This study investigated whether RhoA/Rho-associated kinase and arginase inhibition protect from myocardial ischaemia–reperfusion injury in type 1 diabetes and the mechanisms behind these effects. Methods: Rats with streptozotocin-induced type 1 diabetes and non-diabetic rats were subjected to 30 min myocardial ischaemia and 2 h reperfusion after being randomized to treatment with (1) saline, (2) RhoA/Rho-associated kinase inhibitor hydroxyfasudil, (3) nitric oxide synthase inhibitor NG-monomethyl-l-arginine monoacetate followed by hydroxyfasudil, (4) arginase inhibitor N-omega-hydroxy-nor-l-arginine, (5) NG-monomethyl-l-arginine monoacetate followed by N-omega-hydroxy-nor-l-arginine or (6) NG-monomethyl-l-arginine monoacetate given intravenous before ischaemia. Results: Myocardial arginase activity, arginase 2 expression and RhoA/Rho-associated kinase activity were increased in type 1 diabetes ( p < 0.05). RhoA/Rho-associated kinase inhibition and arginase inhibition significantly reduced infarct size in diabetic and non-diabetic rats ( p < 0.001). The cardioprotective effects of hydroxyfasudil and N-omega-hydroxy-nor-l-arginine in diabetes were abolished by nitric oxide synthase inhibition. RhoA/Rho-associated kinase inhibition attenuated myocardial arginase activity in diabetic rats via a nitric oxide synthase–dependent mechanism. Conclusion: Inhibition of either RhoA/Rho-associated kinase or arginase protects from ischaemia–reperfusion injury in rats with type 1 diabetes via a nitric oxide synthase–dependent pathway. These results suggest that inhibition of RhoA/Rho-associated kinase and arginase constitutes a potential therapeutic strategy to protect the diabetic heart against ischaemia–reperfusion injury.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy