SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Traylor Matthew) srt2:(2019)"

Search: WFRF:(Traylor Matthew) > (2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chung, Jaeyoon, et al. (author)
  • Genome-wide association study of cerebral small vessel disease reveals established and novel loci
  • 2019
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 142:10, s. 3176-3189
  • Journal article (peer-reviewed)abstract
    • Intracerebral haemorrhage and small vessel ischaemic stroke (SVS) are the most acute manifestations of cerebral small vessel disease, with no established preventive approaches beyond hypertension management. Combined genome-wide association study (GWAS) of these two correlated diseases may improve statistical power to detect novel genetic factors for cerebral small vessel disease, elucidating underlying disease mechanisms that may form the basis for future treatments. Because intracerebral haemorrhage location is an adequate surrogate for distinct histopathological variants of cerebral small vessel disease (lobar for cerebral amyloid angiopathy and non-lobar for arteriolosclerosis), we performed GWAS of intracerebral haemorrhage by location in 1813 subjects (755 lobar and 1005 non-lobar) and 1711 stroke-free control subjects. Intracerebral haemorrhage GWAS results by location were meta-analysed with GWAS results for SVS from MEGASTROKE, using 'Multi-Trait Analysis of GWAS' (MTAG) to integrate summary data across traits and generate combined effect estimates. After combining intracerebral haemorrhage and SVS datasets, our sample size included 241 024 participants (6255 intracerebral haemorrhage or SVS cases and 233 058 control subjects). Genome-wide significant associations were observed for non-lobar intracerebral haemorrhage enhanced by SVS with rs2758605 [MTAG P-value (P) = 2.6 × 10-8] at 1q22; rs72932727 (P = 1.7 × 10-8) at 2q33; and rs9515201 (P = 5.3 × 10-10) at 13q34. In the GTEx gene expression library, rs2758605 (1q22), rs72932727 (2q33) and rs9515201 (13q34) are significant cis-eQTLs for PMF1 (P = 1 × 10-4 in tibial nerve), NBEAL1, FAM117B and CARF (P < 2.1 × 10-7 in arteries) and COL4A2 and COL4A1 (P < 0.01 in brain putamen), respectively. Leveraging S-PrediXcan for gene-based association testing with the predicted expression models in tissues related with nerve, artery, and non-lobar brain, we found that experiment-wide significant (P < 8.5 × 10-7) associations at three genes at 2q33 including NBEAL1, FAM117B and WDR12 and genome-wide significant associations at two genes including ICA1L at 2q33 and ZCCHC14 at 16q24. Brain cell-type specific expression profiling libraries reveal that SEMA4A, SLC25A44 and PMF1 at 1q22 and COL4A1 and COL4A2 at 13q34 were mainly expressed in endothelial cells, while the genes at 2q33 (FAM117B, CARF and NBEAL1) were expressed in various cell types including astrocytes, oligodendrocytes and neurons. Our cross-phenotype genetic study of intracerebral haemorrhage and SVS demonstrates novel genome-wide associations for non-lobar intracerebral haemorrhage at 2q33 and 13q34. Our replication of the 1q22 locus previous seen in traditional GWAS of intracerebral haemorrhage, as well as the rediscovery of 13q34, which had previously been reported in candidate gene studies with other cerebral small vessel disease-related traits strengthens the credibility of applying this novel genome-wide approach across intracerebral haemorrhage and SVS.
  •  
2.
  • Larsson, Susanna C., et al. (author)
  • Homocysteine and small vessel stroke : A mendelian randomization analysis
  • 2019
  • In: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 85:4, s. 495-501
  • Journal article (peer-reviewed)abstract
    • Objective Trials of B vitamin therapy to lower blood total homocysteine (tHcy) levels for prevention of stroke are inconclusive. Secondary analyses of trial data and epidemiological studies suggest that tHcy levels may be particularly associated with small vessel stroke (SVS). We assessed whether circulating tHcy and B vitamin levels are selectively associated with SVS, but not other stroke subtypes, using Mendelian randomization.MethodsWe used summary statistics data for single-nucleotide polymorphisms (SNPs) associated with tHcy (n = 18), folate (n = 3), vitamin B-6 (n = 1), and vitamin B-12 (n = 14) levels, and the corresponding data for stroke from the MEGASTROKE consortium (n = 16,952 subtyped ischemic stroke cases and 404,630 noncases).ResultsGenetically predicted tHcy was associated with SVS, with an odds ratio of 1.34 (95% confidence interval [CI], 1.13-1.58; p = 6.7 x 10(-4)) per 1 standard deviation (SD) increase in genetically predicted tHcy levels, but was not associated with large artery or cardioembolic stroke. The association was mainly driven by SNPs at or near the MTHFR and MUT genes. The odds ratios of SVS per 1 SD increase in genetically predicted folate and vitamin B-6 levels were 0.49 (95% CI, 0.34-0.71; p = 1.3 x 10(-4)) and 0.70 (95% CI, 0.52-0.94; p = 0.02), respectively. Genetically higher vitamin B-12 levels were not associated with any stroke subtype.Interpretation These findings suggest that any effect of homocysteine-lowering treatment in preventing stroke will be confined to the SVS subtype. Whether genetic variants at or near the MTHFR and MUT genes influence SVS risk through pathways other than homocysteine levels and downstream effects require further investigation. Ann Neurol 2019;85:495-501
  •  
3.
  • Söderholm, Martin, et al. (author)
  • Genome-wide association meta-analysis of functional outcome after ischemic stroke
  • 2019
  • In: Neurology. - 1526-632X. ; 92:12, s. 1271-1283
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To discover common genetic variants associated with poststroke outcomes using a genome-wide association (GWA) study. METHODS: The study comprised 6,165 patients with ischemic stroke from 12 studies in Europe, the United States, and Australia included in the GISCOME (Genetics of Ischaemic Stroke Functional Outcome) network. The primary outcome was modified Rankin Scale score after 60 to 190 days, evaluated as 2 dichotomous variables (0-2 vs 3-6 and 0-1 vs 2-6) and subsequently as an ordinal variable. GWA analyses were performed in each study independently and results were meta-analyzed. Analyses were adjusted for age, sex, stroke severity (baseline NIH Stroke Scale score), and ancestry. The significance level was p < 5 × 10-8. RESULTS: We identified one genetic variant associated with functional outcome with genome-wide significance (modified Rankin Scale scores 0-2 vs 3-6, p = 5.3 × 10-9). This intronic variant (rs1842681) in the LOC105372028 gene is a previously reported trans-expression quantitative trait locus for PPP1R21, which encodes a regulatory subunit of protein phosphatase 1. This ubiquitous phosphatase is implicated in brain functions such as brain plasticity. Several variants detected in this study demonstrated suggestive association with outcome (p < 10-5), some of which are within or near genes with experimental evidence of influence on ischemic stroke volume and/or brain recovery (e.g., NTN4, TEK, and PTCH1). CONCLUSIONS: In this large GWA study on functional outcome after ischemic stroke, we report one significant variant and several variants with suggestive association to outcome 3 months after stroke onset with plausible mechanistic links to poststroke recovery. Future replication studies and exploration of potential functional mechanisms for identified genetic variants are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view