SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tryggvason Karl) srt2:(2015-2019)"

Search: WFRF:(Tryggvason Karl) > (2015-2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Damdimopoulou, Pauliina, et al. (author)
  • Human embryonic stem cells
  • 2016
  • In: Baillière's Best Practice & Research. - : Elsevier BV. - 1521-6934 .- 1532-1932. ; 31, s. 2-12
  • Journal article (peer-reviewed)abstract
    • The establishment of permanent human embryonic stem cell lines (hESCs) was first reported in 1998. Due to their pluripotent nature and ability to differentiate to all cell types in the body, they have been considered as a cell source for regenerative medicine. Since then, intensive studies have been carried out regarding factors regulating pluripotency and differentiation. hESCs are obtained from supernumerary human IVF (in vitro fertilization) embryos that cannot be used for the couple's infertility treatment. Today, we can establish and expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos. There are satisfactory tests for the demonstration of genetic stability, absence of tumorigenic mutations, functionality, and safety of hESCs. Clinical trials are ongoing for age-related macular degeneration (AMD) and spinal cord injury (SCI). This review focuses on the present state of these techniques.
  •  
2.
  • Perisic, Ljubica, et al. (author)
  • Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Journal article (peer-reviewed)abstract
    • Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGF beta signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated.
  •  
3.
  • Rodriguez, Patricia Q., et al. (author)
  • Knockdown of Tmem234 in zebrafish results in proteinuria
  • 2015
  • In: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 309:11, s. F955-F966
  • Journal article (peer-reviewed)abstract
    • Podocytes are highly specialized epithelial cells located at the outer aspects of the glomerular capillary tuft and critical components of the kidney filtration barrier. To maintain their unique features, podocytes express a number of proteins that are only sparsely found elsewhere in the body. In this study, we have identified four (Tmem234, Znf185, Lrrc49, and Slfn5) new highly podocyte-enriched proteins. The proteins are strongly expressed by podocytes, while other parts of the kidney show only weak or no expression. Tmem234, Slfn5, and Lrrc49 are located in foot processes, whereas Znf185 is found in both foot and major processes. Expressional studies in developing kidneys show that these proteins are first expressed at the capillary stage glomerulus, the same stage when the formation of major and foot processes begins. We identified zebrafish orthologs for Tmem234 and Znf185 genes and knocked down their expression using morpholino technology. Studies in zebrafish larvae indicate that Tmem234 is essential for the organization and functional integrity of the pronephric glomerulus filtration barrier, as inactivation of Tmem234 expression results in foot process effacement and proteinuria. In summary, we have identified four novel highly podocyte - enriched proteins and show that one of them, Tmem234, is essential for the normal filtration barrier in the zebrafish pronephric glomerulus. Identification of new molecular components of the kidney filtration barrier opens up possibilities to study their role in glomerulus biology and diseases.
  •  
4.
  • Sigmundsson, Kristmundur, et al. (author)
  • Culturing functional pancreatic islets on α5-laminins and curative transplantation to diabetic mice.
  • 2018
  • In: Matrix Biology. - : Elsevier BV. - 0945-053X .- 1569-1802. ; 70, s. 5-19
  • Journal article (peer-reviewed)abstract
    • The efficacy of islet transplantation for diabetes treatment suffers from lack of cadaver-derived islets, islet necrosis and long transfer times prior to transplantation. Here, we developed a method for culturing mouse and human islets in vitro on α5-laminins, which are natural components of islet basement membranes. Adhering islets spread to form layers of 1-3 cells in thickness and remained normoxic and functional for at least 7 days in culture. In contrast, spherical islets kept in suspension developed hypoxia and central necrosis within 16 h. Transplantation of 110-150 mouse islets cultured on α5-laminin-coated polydimethylsiloxane membranes for 3-7 days normalized blood glucose already within 3 days in mice with streptozotocin-induced diabetes. RNA-sequencing of isolated and cultured mouse islets provided further evidence for the adhesion and spreading achieved with α5-laminin. Our results suggest that use of such in vitro expanded islets may significantly enhance the efficacy of islet transplantation treatment for diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view