SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Valen G) srt2:(2000-2004)"

Search: WFRF:(Valen G) > (2000-2004)

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Fredholm, BB, et al. (author)
  • Consequences of eliminating adenosine A(1) receptors in mice
  • 2003
  • In: Drug Development Research (Proceedings of the Seventh International Symposium on Adenosine and Adenine Nucleotides - Part 1). - : Wiley. - 1098-2299 .- 0272-4391. ; 58, s. 350-
  • Conference paper (peer-reviewed)abstract
    • The second coding exon of the adenosine A, receptor gene was eliminated by homologous recombination. The phenotype of mice (mixed C57B6/129OlaHsd background) was studied, using siblings from matings of heterozygous mice. Among the offspring the ratio between+/+, +/-and -/-animals was 1:2:1. Over the first half-year-at least-growth and viability were the same in all genotypes. Binding of A(1) ligands was eliminated in-/-mice and halved in+/-mice. Blood pressure was increased in-/-mice and this was paralleled by an increase in plasma renin. Heart rate was unaffected, as was contractility. Furthermore, the response of the perfused heart to ischemia was similar in+/+and -/-hearts. However, remote preconditioning was eliminated in-/-mouse hearts. Tubuloglomerular feedback in the kidney was also lost in-/-mice. The analgesic response to a non-selective adenosing receptor agonist was lost in-/-mice, which also showed hyperalgesia in the tail-flick test. There was a slight hypoactivity in-/-mice, but responses to caffeine were essentially normal. The inhibition of excitatory neurotransmission in hippocampus by adenosine was lost in-/-mice and reduced in+/-mice. Responses to ATP were affected similarly. Hypoxic depression of synaptic transmission was essentially eliminated in hippocampus and hypoxic decrease in spinal respiratory neuron firing was markedly reduced. These results show that adenosine A, receptors play a physiologically important role in the kidney, spinal cord, and hippocampus and that they are critically important in the adaptive responses to hypoxia. (C) 2003 Wiley-Liss, Inc.
  •  
3.
  •  
4.
  •  
5.
  • Tähepõld, P, et al. (author)
  • Exposure of rats to hyperoxia enhances relaxation of isolated aortic rings and reduces infarct size of isolated hearts.
  • 2002
  • In: Acta Physiologica Scandinavica. - 0001-6772 .- 1365-201X. ; 175:4, s. 271-7
  • Journal article (peer-reviewed)abstract
    • Exposure of rats to hyperoxia before organ harvesting protected their isolated hearts against global ischaemia-reperfusion injury in a previous study. The present study investigates whether hyperoxia influences vasomotor function and regional ischaemia of the heart. Isolated rings of the thoracic aorta were obtained from rats immediately or 24 h after in vivo exposure to 60 min of hyperoxia (>95% O2), and the in vitro dose-response to phenylephrine (PHE), prostaglandin F2alpha (PGF2alpha) and endothelin-1 (ET-1), acetylcholine (Ach) and sodium nitroprusside (SNP) was assessed. Hyperoxia in vivo increased the relaxation of aortic rings to Ach and SNP, while it delayed contraction to PHE. The effect was more evident when the vessels were harvested immediately rather than 24 h after hyperoxic exposure. In separate experiments rat hearts were isolated immediately after hyperoxia, buffer-perfused, and subjected to 30 min of regional ischaemia and reperfused for 120 min. Infarct size was determined by triphenyl tetrazolium chloride staining. Hyperoxia significantly reduced infarct size. In normoxic controls 23.0 +/- 8.3% of the area at risk was infarcted, while in hyperoxic animals infarct size was 14.8 +/- 5.6% of the area at risk (P = 0.012). Exposure of rats to hyperoxia modifies the vasomotor response of isolated aortic rings, and reduces the infarct size of isolated rat heart. These novel aspects of hyperoxic treatment require further studies to explore the potential of its clinical application.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Gonon, AT, et al. (author)
  • Nitric oxide mediates protective effect of endothelin receptor antagonism during myocardial ischemia and reperfusion
  • 2004
  • In: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 286:5, s. H1767-H1774
  • Journal article (peer-reviewed)abstract
    • Endothelin (ET) receptor antagonism protects from ischemiareperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 μM), the NO synthase inhibitor NG-monomethyl-l-arginine (l-NMMA; 100 μM), the combination of bosentan and l-NMMA or the combination of bosentan, l-NMMA, and the NO substrate l-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by l-NMMA, whereas it was restored by l-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 ± 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 ± 5% in the vehicle group ( P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view