SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wacklin Hanna) srt2:(2020-2023)"

Search: WFRF:(Wacklin Hanna) > (2020-2023)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Clifton, Luke A., et al. (author)
  • Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis
  • 2023
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 9:22
  • Journal article (peer-reviewed)abstract
    • Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of whichwere critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.
  •  
3.
  • Clifton, Luke A., et al. (author)
  • Insight into Bcl-2 proteins' functioning at mitochondrial membrane level
  • 2023
  • In: Biophysical Journal. - : Elsevier. - 0006-3495 .- 1542-0086. ; 122:3S1, s. 232a-232a
  • Journal article (peer-reviewed)abstract
    • Programmed cell death (apoptosis) is essential in life. In its intrinsic apoptotic pathway opposing members of the B-cell lymphoma 2 (Bcl-2) protein family control the permeability of the mitochondrial outer membrane (MOM) and the release of apoptotic factors such as cytochrome c. Any misregulation of this process can cause disorders most prominently cancer, where often upregulation of cell protecting (anti-apoptotic) Bcl-2 members such as the Bcl-2 membrane protein itself plays a notorious role by blocking MOM perforation by - often drug induced - apoptotic proteins such as Bax which would cause cancer cell death normally. Here, we apply neutron reflectometry (NR) on supported lipid bilayers which mimic MOM environment and solid state/liquid state NMR spectroscopy to unravel the molecular basis driving opposing proteins to interact with each other at the MOM; a mechanism which is not really understood yet due to lack of high-resolution structural insight. Based on our central hypothesis that Bcl-2 drives its cell-protecting function at a membrane-embedded location as revealed by NR (1), we focus i) to determine the structure of human Bcl-2 protein in its membrane setting by combining solution and solid-state NMR; ii) use NR to study the kinetics and lipid/protein pore assemblied upon binding of Bax to mitochondrial membranes and its membrane destroying activities there; and iii) unravel the nature of direct interaction between Bcl-2 and Bax to neutralize each other. Knowledge generated here, will be indispensable in understanding the regulative function of the Bcl-2 family at mitochondrial membranes.
  •  
4.
  • Delhom, Robin, et al. (author)
  • The Antifungal Mechanism of Amphotericin B Elucidated in Ergosterol and Cholesterol-Containing Membranes Using Neutron Reflectometry
  • 2020
  • In: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:12
  • Journal article (peer-reviewed)abstract
    • We have characterized and compared the structures of ergosterol- and cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes before and after interaction with the amphiphilic antifungal drug amphotericin B (AmB) using neutron reflection. AmB inserts into both pure POPC and sterol-containing membranes in the lipid chain region and does not significantly perturb the structure of pure POPC membranes. By selective per-deuteration of the lipids/sterols, we show that AmB extracts ergosterol but not cholesterol from the bilayers and inserts to a much higher degree in the cholesterol-containing membranes. Ergosterol extraction by AmB is accompanied by membrane thinning. Our results provide new insights into the mechanism and antifungal effect of AmB in these simple models of fungal and mammalian membranes and help understand the molecular origin of its selectivity and toxic side effects.
  •  
5.
  • Luchini, Alessandra, et al. (author)
  • Effect of ergosterol on the interlamellar spacing of deuterated yeast phospholipid multilayers
  • 2020
  • In: Chemistry and Physics of Lipids. - : Elsevier BV. - 0009-3084. ; 227
  • Journal article (peer-reviewed)abstract
    • Sterols regulate several physico-chemical properties of biological membranes that are considered to be linked to function. Ergosterol is the main sterol molecule found in the cell membranes of yeasts and other fungi. Like the cholesterol found in mammalian cells, ergosterol has been proposed to have an ordering and condensing effect on saturated phospholipid membranes. The effects of cholesterol have been investigated extensively and result in an increase in the membrane thickness and the lipid acyl chain order. Less information is available on the effects of ergosterol on phospholipid membranes. Neutron Diffraction (ND) was used to characterize the effect of ergosterol on lipid multilayers prepared with deuterated natural phospholipids extracted from the yeast Pichia pastoris. The data show that the effect of ergosterol on membranes prepared from the natural phospholipid extract rich in unsaturated acyl chains, differs from what has been observed previously in membranes rich in saturated phospholipids. In contrast to cholesterol in synthetic phospholipid membranes, the presence of ergosterol up to 30 mol % in yeast phospholipid membranes only slightly altered the multilayer structure. In particular, only a small decrease in the multilayer d-spacing was observed as function of increasing ergosterol concentrations. This result highlights the need for further investigation to elucidate the effects of ergosterol in biological lipid mixtures.
  •  
6.
  • Orozco Rodriguez, Juan Manuel, et al. (author)
  • New Insights into the Interaction of Class II Dihydroorotate Dehydrogenases with Ubiquinone in Lipid Bilayers as a Function of Lipid Composition
  • 2022
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 23:5
  • Journal article (peer-reviewed)abstract
    • The fourth enzymatic reaction in the de novo pyrimidine biosynthesis, the oxidation of dihydroorotate to orotate, is catalyzed by dihydroorotate dehydrogenase (DHODH). Enzymes belonging to the DHODH Class II are membrane-bound proteins that use ubiquinones as their electron acceptors. We have designed this study to understand the interaction of an N-terminally truncated human DHODH (HsΔ29DHODH) and the DHODH from Escherichia coli (EcDHODH) with ubiquinone (Q10) in supported lipid membranes using neutron reflectometry (NR). NR has allowed us to determine in situ, under solution conditions, how the enzymes bind to lipid membranes and to unambiguously resolve the location of Q10. Q10 is exclusively located at the center of all of the lipid bilayers investigated, and upon binding, both of the DHODHs penetrate into the hydrophobic region of the outer lipid leaflet towards the Q10. We therefore show that the interaction between the soluble enzymes and the membrane-embedded Q10 is mediated by enzyme penetration. We can also show that EcDHODH binds more efficiently to the surface of simple bilayers consisting of 1-palmitoyl, 2-oleoyl phosphatidylcholine, and tetraoleoyl cardiolipin than HsΔ29DHODH, but does not penetrate into the lipids to the same degree. Our results also highlight the importance of Q10, as well as lipid composition, on enzyme binding.
  •  
7.
  • Orozco Rodriguez, Juan Manuel, et al. (author)
  • Protein-lipid interactions of human dihydroorotate dehydrogenase and three mutants associated with Miller syndrome
  • 2022
  • In: Nucleosides, Nucleotides & Nucleic Acids. - : Informa UK Limited. - 1525-7770 .- 1532-2335. ; 41:12, s. 1337-1358
  • Journal article (peer-reviewed)abstract
    • Human dihydroorotate dehydrogenase (DHODH) catalyzes the fourth step of the de novo pyrimidine biosynthesis pathway and uses ubiquinone Q10, a lipophilic molecule located in the inner mitochondrial membrane (IMM), as its co-substrate. DHODH is anchored to the IMM by a single transmembrane helix located at its N-terminus. Nevertheless, how DHODH function is determined by its surrounding membrane environment and protein-lipid interactions, as well as the mechanism by which ubiquinone Q10 accesses the active site of DHODH from within the membrane are still largely unknown. Here, we describe the interaction between wild-type DHODH and three DHODH mutants associated with Miller syndrome and lipids using enzymatic assays, thermal stability assays and Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Our results provide evidence indicating that the N-terminal part of human DHODH is not only a structural element for mitochondrial import and location of DHODH, but also influences enzymatic activity and utilization of ubiquinone Q10 and ubiquinone analogues in in vitro assays. They also support the role of tetraoleoyl cardiolipin as a lipid interacting with DHODH. Additionally, the results from QCM-D show that the Miller syndrome mutants studied differ in their interactions with supported lipid bilayers compared to wild-type DHODH. These altered interactions add another dimension to the effects of mutations found in Miller syndrome. To the best of our knowledge, this is the first investigation of the protein-lipid interactions of DHODH variants associated with Miller syndrome.
  •  
8.
  • Orozco Rodriguez, Juan Manuel, et al. (author)
  • Protein production, kinetic and biophysical characterization of three human dihydroorotate dehydrogenase mutants associated with Miller syndrome
  • 2022
  • In: Nucleosides, Nucleotides & Nucleic Acids. - : Informa UK Limited. - 1525-7770 .- 1532-2335. ; 41:12, s. 1318-1336
  • Journal article (peer-reviewed)abstract
    • Miller syndrome is a rare Mendelian disorder caused by mutations in the gene encoding human dihydroorotate dehydrogenase (DHODH). Human DHODH, a Class II DHODH, is an integral protein of the inner mitochondrial membrane (IMM) catalyzing the fourth step of the de novo pyrimidine biosynthesis pathway. Here we present a summary of the state of knowledge regarding Miller syndrome in the absence of any current review on the topic. We then describe the production and characterization of three distinct DHODH missense mutations (G19E, E52G, R135C) associated with Miller syndrome by means of enzyme kinetics and biophysical techniques. These human DHODH mutants were produced both in E. coli and in insect cells using the baculovirus expression vector system. We can show that the effects of these mutations differ from each other and the wild-type enzyme with respect to decreased enzymatic activity, decreased protein stability and probably disturbance of the correct import into the IMM. In addition, our results show that the N-terminus of human DHODH is not only a structural element necessary for correct mitochondrial import and location of DHODH on the outer side of the IMM, but also influences thermal stability, enzymatic activity and affects the kinetic parameters.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.2023749 .
  •  
9.
  • Rodriguez, Juan Manuel Orozco, et al. (author)
  • Preparation of human dihydroorotate dehydrogenase for interaction studies with lipid bilayers
  • 2020
  • In: Nucleosides, Nucleotides and Nucleic Acids. - : Informa UK Limited. - 1525-7770 .- 1532-2335. ; 39:10-12, s. 1306-1319
  • Journal article (peer-reviewed)abstract
    • Human dihydroorotate dehydrogenase (DHODH) is an integral protein of the inner mitochondrial membrane (IMM) that catalyzes the fourth step of the de novo pyrimidine biosynthesis and is functionally connected to the respiratory chain via its lipophilic co-substrate, ubiquinone Q10. DHODH is the target for drugs approved for the treatment of rheumatoid arthritis and multiple sclerosis, and mutations in its sequence have been identified as the cause of Miller syndrome, a rare genetic disorder. The N-terminus of DHODH consists of a signal peptide for mitochondrial import (MS), a transmembrane domain (TM), followed by a microdomain which interacts with the lipids of the IMM and has been proposed to form the binding site for ubiquinone Q10. However, the mechanism by which DHODH interacts with the membrane-embedded Q10 and the lipids of the IMM remains unknown. We present the preparation and characterization of proteins necessary for investigating the structural interactions of DHODH with the lipids of the IMM, including expression and purification of full-length and N-terminally truncated (without MS and TM) DHODH. We characterized the interaction of truncated DHODH with lipid bilayers containing some key lipids of the IMM using Quartz Crystal Microbalance with Dissipation monitoring and compared it to the DHODH from E. coli, a DHODH that naturally lacks a TM. Our results suggest that although cardiolipin enhances the interaction of truncated DHODH with lipid bilayers, the presence of the TM in human DHODH is necessary for stable binding to and securing its location at the outer surface of the IMM.
  •  
10.
  • Ul Mushtaq, Ameeq, et al. (author)
  • Neutron reflectometry and NMR spectroscopy of full-length Bcl-2 protein reveal its membrane localization and conformation
  • 2021
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Journal article (peer-reviewed)abstract
    • B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region. Through neutron reflectometry and NMR spectroscopy studies, Mushtaq et al study the full-length Bcl-2 protein reconstituted in lipid bilayers. They find that, in contrast to previously studied truncated, soluble protein versions, intact Bcl-2 is mainly embedded in the membrane with its regulatory loop highly flexible.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view