SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wallaschofski H.) srt2:(2017)"

Search: WFRF:(Wallaschofski H.) > (2017)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chu, Audrey Y, et al. (author)
  • Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation
  • 2017
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:1, s. 125-130
  • Journal article (peer-reviewed)abstract
    • Variation in body fat distribution contributes to the metabolic sequelae of obesity. The genetic determinants of body fat distribution are poorly understood. The goal of this study was to gain new insights into the underlying genetics of body fat distribution by conducting sample-size-weighted fixed-effects genome-wide association meta-analyses in up to 9,594 women and 8,738 men of European, African, Hispanic and Chinese ancestry, with and without sex stratification, for six traits associated with ectopic fat (hereinafter referred to as ectopic-fat traits). In total, we identified seven new loci associated with ectopic-fat traits (ATXN1, UBE2E2, EBF1, RREB1, GSDMB, GRAMD3 and ENSA; P < 5 × 10(-8); false discovery rate < 1%). Functional analysis of these genes showed that loss of function of either Atxn1 or Ube2e2 in primary mouse adipose progenitor cells impaired adipocyte differentiation, suggesting physiological roles for ATXN1 and UBE2E2 in adipogenesis. Future studies are necessary to further explore the mechanisms by which these genes affect adipocyte biology and how their perturbations contribute to systemic metabolic disease.
  •  
2.
  • Eriksson, Joel, et al. (author)
  • Causal relationship between obesity and serum testosterone status in men: A bi-directional mendelian randomization analysis
  • 2017
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Context Obesity in men is associated with low serum testosterone and both are associated with several diseases and increased mortality. Examine the direction and causality of the relationship between body mass index (BMI) and serum testosterone. Bi-directional Mendelian randomization (MR) analysis on prospective cohorts. Five cohorts from Denmark, Germany and Sweden (Inter99, SHIP, SHIP Trend, GOOD and MrOS Sweden). 7446 Caucasian men, genotyped for 97 BMI-associated SNPs and three testosterone-associated SNPs. BMI and serum testosterone adjusted for age, smoking, time of blood sampling and site. 1 SD genetically instrumented increase in BMI was associated with a 0.25 SD decrease in serum testosterone (IV ratio: -0.25, 95% CI: -0.42-0.09, p = 2.8*10(-3)). For a body weight reduction altering the BMI from 30 to 25 kg/m(2), the effect would equal a 13% increase in serum testosterone. No association was seen for genetically instrumented testosterone with BMI, a finding that was confirmed using large-scale data from the GIANT consortium (n = 104349). Our results suggest that there is a causal effect of BMI on serum testosterone in men. Population level interventions to reduce BMI are expected to increase serum testosterone in men.
  •  
3.
  • Robinson-Cohen, Cassianne, et al. (author)
  • Genetic Variants Associated with Circulating Parathyroid Hormone.
  • 2017
  • In: Journal of the American Society of Nephrology : JASN. - 1533-3450. ; 28:5, s. 1553-1565
  • Journal article (peer-reviewed)abstract
    • Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies (n=22,653 and n=6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 (P=4.2 × 10(-53)), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 (P=6.6 × 10(-17)), rs219779 adjacent to CLDN14 (P=3.5 × 10(-16)), rs4443100 near RTDR1 (P=8.7 × 10(-9)), and rs73186030 near CASR (P=4.8 × 10(-8)). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view