SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Walter Nicolas) srt2:(2020-2024)"

Search: WFRF:(Walter Nicolas) > (2020-2024)

  • Result 1-10 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Jones, Geraint H., et al. (author)
  • The Comet Interceptor Mission
  • 2024
  • In: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Journal article (peer-reviewed)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
3.
  • Abbafati, Cristiana, et al. (author)
  • 2020
  • Journal article (peer-reviewed)
  •  
4.
  • Ainslie-Garcia, Margaret, et al. (author)
  • International Delphi Study on Wound Closure and Dressing Management in Joint Arthroplasty: Part 1: Total Knee Arthroplasty.
  • 2024
  • In: The Journal of arthroplasty. - 0883-5403 .- 1532-8406. ; 39:4, s. 878-883
  • Journal article (peer-reviewed)abstract
    • The purpose of this modified Delphi study was to obtain consensus on wound closure and dressing management in total knee arthroplasty (TKA).The Delphi panel included 20 orthopaedic surgeons from Europe and North America. There were 26 statements identified using a targeted literature review. Consensus was developed for the statements with up to three rounds of anonymous voting per topic. Panelists ranked their agreement with each statement on a five-point Likert scale. An a priori threshold of ≥ 75% was required for consensus.All 26 statements achieved consensus after three rounds of anonymous voting. Wound closure-related interventions that were recommended for use in TKA included: 1) closing in semi-flexion versus extension (superior range of motion); 2) using aspirin for venous thromboembolism prophylaxis over other agents (reduces wound complications); 3) barbed sutures over non-barbed sutures (lower wound complications, better cosmetic appearances, shorter closing times, and overall cost savings); 4) mesh-adhesives over other skin closure methods (lower wound complications, higher patient satisfaction scores, lower rates of readmission); 5) silver-impregnated dressings over standard dressings (lower wound complications, decreased infections, fewer dressing changes); 6) in high-risk patients, negative pressure wound therapy over other dressings (lower wound complications, decreased reoperations, fewer dressing changes); and 7) using triclosan-coated over non-antimicrobial-coated sutures (lower risks of surgical site infection).Using a modified Delphi approach, the panel achieved consensus on 26 statements pertaining to wound closure and dressing management in TKA. This study forms the basis for identifying critical evidence supported by clinical practice for wound management to help reduce variability, advance standardization, and ultimately improve outcomes during TKA. The results presented here can serve as the foundation for knowledge, education, and improved clinical outcomes for surgeons performing TKAs.
  •  
5.
  • Ainslie-Garcia, Margaret, et al. (author)
  • International Delphi Study on Wound Closure and Incision Management in Joint Arthroplasty Part 2: Total Hip Arthroplasty.
  • 2024
  • In: The Journal of arthroplasty. - 0883-5403 .- 1532-8406. ; 39:6, s. 1524-1529
  • Journal article (peer-reviewed)abstract
    • This modified Delphi study aimed to develop a consensus on optimal wound closure and incision management strategies for total hip arthroplasty (THA). Given the critical nature of wound care and incision management in influencing patient outcomes, this study sought to synthesize evidence-based best practices for wound care in THA procedures.An international panel of 20 orthopedic surgeons from Europe, Canada, and the United States evaluated a targeted literature review of 18 statements (14 specific to THA and 4 related to both THA and total knee arthroplasty). There were 3 rounds of anonymous voting per topic using a modified 5-point Likert scale with a predetermined consensus threshold of ≥ 75% agreement necessary for a statement to be accepted.After 3 rounds of voting, consensus was achieved for all 18 statements. Notable recommendations for THA wound management included (1) the use of barbed sutures over non-barbed sutures (shorter closing times and overall cost savings); (2) the use of subcuticular sutures over skin staples (lower risk of superficial infections and higher patient preferences, but longer closing times); (3) the use of mesh-adhesives over silver-impregnated dressings (lower rate of wound complications); (4) for at-risk patients, the use of negative pressure wound therapy over other dressings (lower wound complications and reoperations, as well as fewer dressing changes); and (5) the use of triclosan-coated sutures (lower risk of surgical site infection) over standard sutures.Through a structured modified Delphi approach, a panel of 20 orthopedic surgeons reached consensus on all 18 statements pertaining to wound closure and incision management in THA. This study provides a foundational framework for establishing evidence-based best practices, aiming to reduce variability in patient outcomes and to enhance the overall quality of care in THA procedures.
  •  
6.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
7.
  • Awais, Muhammad, et al. (author)
  • Healthcare Professional in the Loop (HPIL) : Classification of Standard and Oral Cancer-Causing Anomalous Regions of Oral Cavity Using Textural Analysis Technique in Autofluorescence Imaging
  • 2020
  • In: Sensors. - : MDPI. - 1424-8220. ; 20:20
  • Journal article (peer-reviewed)abstract
    • Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an advanced machine learning procedure. HPIL is a novel system approach based on the textural pattern of OML and OPMDs (anomalous regions) to differentiate them from standard regions of the oral cavity by using autofluorescence imaging. An innovative method based on pre-processing, e.g., the Deriche–Canny edge detector and circular Hough transform (CHT); a post-processing textural analysis approach using the gray-level co-occurrence matrix (GLCM); and a feature selection algorithm (linear discriminant analysis (LDA)), followed by k-nearest neighbor (KNN) to classify OPMDs and the standard region, is proposed in this paper. The accuracy, sensitivity, and specificity in differentiating between standard and anomalous regions of the oral cavity are 83%, 85%, and 84%, respectively. The performance evaluation was plotted through the receiver operating characteristics of periodontist diagnosis with the HPIL system and without the system. This method of classifying OML and OPMD areas may help the dental specialist to identify anomalous regions for performing their biopsies more efficiently to predict the histological diagnosis of epithelial dysplasia.
  •  
8.
  • Benz, W., et al. (author)
  • The CHEOPS mission
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:1, s. 109-151
  • Journal article (peer-reviewed)abstract
    • The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R⊙) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R⊙) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
  •  
9.
  • Bonfanti, A., et al. (author)
  • CHEOPS observations of the HD 108236 planetary system: A fifth planet, improved ephemerides, and planetary radii
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Journal article (peer-reviewed)abstract
    • Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R? = 0.877 ± 0.008 R? , M? = 0.869-0.048+0.050 M? , and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R? for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V - 9 mag solar-like star and a transit signal of -500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
  •  
10.
  • Bousquet, Jean, et al. (author)
  • ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
  • 2021
  • In: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 76:1, s. 168-190
  • Research review (peer-reviewed)abstract
    • Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 30
Type of publication
journal article (26)
doctoral thesis (2)
research review (2)
Type of content
peer-reviewed (28)
other academic/artistic (2)
Author/Editor
Thomas, Nicolas (7)
Beck, M (6)
Walton, N. A. (6)
Ehrenreich, D. (6)
Erikson, Anders (6)
Barros, S.C.C. (6)
show more...
Lendl, M. (6)
Fortier, A. (6)
Collier Cameron, A. (6)
Demory, B.O. (6)
Sousa, S.G. (6)
Scandariato, Gaetano (6)
Demangeon, O. (6)
Alibert, Y. (6)
Alonso, R. (6)
Bárczy, T. (6)
Baumjohann, W. (6)
Beck, T. (6)
Benz, W. (6)
Billot, N. (6)
Bonfils, X. (6)
Broeg, C. (6)
Charnoz, S. (6)
Deleuil, M. (6)
Delrez, L. (6)
Fossati, L. (6)
Fridlund, Malcolm, 1 ... (6)
Gandolfi, D. (6)
Gillon, Michaël (6)
Hoyer, S. (6)
Isaak, K. (6)
Laskar, J. (6)
des Etangs, A. L. (6)
Magrin, D. (6)
Maxted, P. (6)
Nascimbeni, Valerio (6)
Pagano, I. (6)
Peter, G. (6)
Piotto, Giampaolo P. (6)
Queloz, D. (6)
Rando, N. (6)
Rauer, H. (6)
Ribas, I. (6)
Santos, N. C. (6)
Segransan, D. (6)
Simon, A.E. (6)
Szabó, G.M. (6)
Udry, S. (6)
Van Grootel, V. (6)
Walter, I. (6)
show less...
University
University of Gothenburg (11)
Stockholm University (9)
Uppsala University (7)
Chalmers University of Technology (7)
Lund University (6)
Karolinska Institutet (5)
show more...
Umeå University (3)
Linnaeus University (2)
Royal Institute of Technology (1)
Luleå University of Technology (1)
Malmö University (1)
Karlstad University (1)
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (30)
Research subject (UKÄ/SCB)
Natural sciences (19)
Medical and Health Sciences (9)
Engineering and Technology (4)
Agricultural Sciences (4)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view