SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Webber L) srt2:(2015-2019)"

Sökning: WFRF:(Webber L) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lensen, S., et al. (författare)
  • A Randomized Trial of Endometrial Scratching before In Vitro Fertilization
  • 2019
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 380:4, s. 325-334
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Endometrial scratching (with the use of a pipelle biopsy) is a technique proposed to facilitate embryo implantation and increase the probability of pregnancy in women undergoing in vitro fertilization (IVF). We conducted a pragmatic, multicenter, open-label, randomized, controlled trial. Eligible women were undergoing IVF (fresh-embryo or frozen-embryo transfer), with no recent exposure to disruptive intrauterine instrumentation (e.g., hysteroscopy). Participants were randomly assigned in a 1: 1 ratio to either endometrial scratching (by pipelle biopsy between day 3 of the cycle preceding the embryo-transfer cycle and day 3 of the embryo-transfer cycle) or no intervention. The primary outcome was live birth. A total of 1364 women underwent randomization. The frequency of live birth was 180 of 690 women (26.1%) in the endometrial-scratch group and 176 of 674 women (26.1%) in the control group (adjusted odds ratio, 1.00; 95% confidence interval, 0.78 to 1.27). There were no significant between-group differences in the rates of ongoing pregnancy, clinical pregnancy, multiple pregnancy, ectopic pregnancy, or miscarriage. The median score for pain from endometrial scratching (on a scale of 0 to 10, with higher scores indicating worse pain) was 3.5 (interquartile range, 1.9 to 6.0). Endometrial scratching did not result in a higher rate of live birth than no intervention among women undergoing IVF.
  •  
4.
  •  
5.
  • Dening, Tahnee J., et al. (författare)
  • Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 532, s. 666-679
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis: Solid-state lipid formulations, whereby liquid lipids are encapsulated in inorganic particle matrices, have attracted significant interest for drug/nutrient delivery in recent years. We hypothesized that the surface chemistry of the inorganic material used to encapsulate lipids impacts the lipase-mediated digestion and partitioning of lipolytic species between the solubilized aqueous and insoluble pellet phases. Experiments: Medium chain triglycerides were spray dried with silica nanoparticles, montmorillonite or laponite platelets to form inorganic-lipid hybrid particles. In vitro lipolysis studies were conducted under gastric (pH 1.6) and intestinal (pH 7.5) conditions, and the speciation and partitioning of lipolytic products between the aqueous and pellet phases was characterized using solution-state proton nuclear magnetic resonance and fourier transform infrared spectroscopy. Findings: Under gastric conditions, greater than 80% of all lipid species remained adsorbed within each lipolysis pellet after 60 min. Approximately 40%, 50–60% and 80–90% of all lipid species were adsorbed from solution by silica-, montmorillonite- and laponite-based particle matrices during intestinal lipolysis. Monoglycerides were preferentially adsorbed by silica, whereas triglycerides and fatty acids were adsorbed by montmorillonite and laponite. Adsorption of lipolytic products from solution is expected to impact significantly on drug/nutrient solubilization and absorption in vivo. To the best of our knowledge, this is the first report characterizing the speciation and phase behavior of lipolytic products released from solid-state lipid formulations during in vitro lipolysis studies.
  •  
6.
  • Huang, J., et al. (författare)
  • Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene
  • 2015
  • Ingår i: Journal of Physics Condensed Matter. - : IOP Publishing. - 0953-8984 .- 1361-648X. ; 27:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy relaxation of hot Dirac fermions in bilayer epitaxial graphene is experimentally investigated by magnetotransport measurements on Shubnikov-de Haas oscillations and weak localization. The hot-electron energy loss rate is found to follow the predicted Bloch-Gruneisen power-law behaviour of T-4 at carrier temperatures from 1.4K up to similar to 100 K, due to electron-acoustic phonon interactions with a deformation potential coupling constant of 22 eV. A carrier density dependence n(e)(-1.5) in the scaling of the T-4 power law is observed in bilayer graphene, in contrast to the n(e)(-0.5) dependence in monolayer graphene, leading to a crossover in the energy loss rate as a function of carrier density between these two systems. The electron-phonon relaxation time in bilayer graphene is also shown to be strongly carrier density dependent, while it remains constant for a wide range of carrier densities in monolayer graphene. Our results and comparisons between the bilayer and monolayer exhibit a more comprehensive picture of hot carrier dynamics in graphene systems.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy