SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wei Fang Fei) srt2:(2022)"

Search: WFRF:(Wei Fang Fei) > (2022)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Liu, Wei, et al. (author)
  • Coherent dynamics of multi-spin V-B(-) center in hexagonal boron nitride
  • 2022
  • In: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics ofmicrowave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V-B(-)) spin ensemble in hBN. We report on different dynamics of the V-B(-) spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V-B(-) and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V-B(-) center, which can be modulated by the magnetic field and microwave field.
  •  
2.
  • Wang, Fei, et al. (author)
  • Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-beta, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.
  •  
3.
  • Wang, Xiaohua, et al. (author)
  • Tacrolimus Causes Hypertension by Increasing Vascular Contractility via RhoA (Ras Homolog Family Member A)/ROCK (Rho-Associated Protein Kinase) Pathway in Mice
  • 2022
  • In: Hypertension. - : Ovid Technologies (Wolters Kluwer Health). - 0194-911X .- 1524-4563. ; 79:10, s. 2228-2238
  • Journal article (peer-reviewed)abstract
    • Background: To provide tacrolimus is first-line treatment after liver and kidney transplantation. However, hypertension and nephrotoxicity are common tacrolimus side effects that limit its use. Although tacrolimus-related hypertension is well known, the underlying mechanisms are not. Here, we test whether tacrolimus-induced hypertension involves the RhoA (Ras homolog family member A)/ROCK (Rho-associated protein kinase) pathway in male C57Bl/6 mice. methods: Intra-arterial blood pressure was measured under anesthesia. The reactivity of renal afferent arterioles and mesenteric arteries were assessed in vitro using microperfusion and wire myography, respectively. Results: Tacrolimus induced a transient rise in systolic arterial pressure that was blocked by the RhoA/ROCK inhibitor Fasudil (12.0 +/- 0.9 versus 3.2 +/- 0.7; P<0.001). Moreover, tacrolimus reduced the glomerular filtration rate, which was also prevented by Fasudil (187 +/- 20 versus 281 +/- 8.5; P<0.001). Interestingly, tacrolimus enhanced the sensitivity of afferent arterioles and mesenteric arteries to Ang II (angiotensin II), likely due to increased intracellular Ca2+ mobilization and sensitization. Fasudil prevented increased Ang II-sensitivity and blocked Ca2+ mobilization and sensitization. Preincubation of mouse aortic vascular smooth muscle cells with tacrolimus activated the RhoA/ROCK/MYPT-1 (myosin phosphatase targeting subunit 1) pathway. Further, tacrolimus increased cytoplasmic reactive oxygen species generation in afferent arterioles (107 +/- 5.9 versus 163 +/- 6.4; P<0.001) and in cultured mouse aortic vascular smooth muscle cells (100 +/- 7.5 versus 160 +/- 23.2; P<0.01). Finally, the reactive oxygen species scavenger Tempol inhibited tacrolimus-induced Ang II hypersensitivity in afferent arterioles and mesenteric arteries. Conclusions: The RhoA/ROCK pathway may play an important role in tacrolimus-induced hypertension by enhancing Ang II-specific vasoconstriction, and reactive oxygen species may participate in this process by activating the RhoA/ROCK pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view