SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Welling D.) srt2:(2015-2019)"

Search: WFRF:(Welling D.) > (2015-2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jordanova, V. K., et al. (author)
  • Specification of the near-Earth space environment with SHIELDS
  • 2018
  • In: Journal of Atmospheric and Solar-Terrestrial Physics. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1364-6826 .- 1879-1824. ; 177, s. 148-159
  • Journal article (peer-reviewed)abstract
    • Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of "space weather" and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.
  •  
2.
  • Anker, A., et al. (author)
  • Neutrino vertex reconstruction with in-ice radio detectors using surface reflections and implications for the neutrino energy resolution
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :11
  • Journal article (peer-reviewed)abstract
    • Ultra high energy neutrinos (E-nu >10(16.5) eV) are efficiently measured via radio signals following a neutrino interaction in ice. An antenna placed O(15 m) below the ice surface will measure two signals for the vast majority of events (90% at E-nu = 10(18) eV): a direct pulse and a second delayed pulse from a reflection off the ice surface. This allows for a unique identification of neutrinos against backgrounds arriving from above. Furthermore, the time delay between the direct and reflected signal (D'n'R) correlates with the distance to the neutrino interaction vertex, a crucial quantity to determine the neutrino energy. In a simulation study, we derive the relation between time delay and distance and study the corresponding experimental uncertainties in estimating neutrino energies. We find that the resulting contribution to the energy resolution is well below the natural limit set by the unknown inelasticity in the initial neutrino interaction. We present an in-situ measurement that proves the experimental feasibility of this technique. Continuous monitoring of the local snow accumulation in the vicinity of the transmit and receive antennas using this technique provide a precision of O(1mm) in surface elevation, which is much better than that needed to apply the D'n'R technique to neutrinos.
  •  
3.
  • Welling, D. T., et al. (author)
  • Recommendations for Next-Generation Ground Magnetic Perturbation Validation
  • 2018
  • In: Space Weather. - 1542-7390. ; 16:12, s. 1912-1920
  • Journal article (peer-reviewed)abstract
    • Data-model validation of ground magnetic perturbation forecasts, specifically of the time rate of change of surface magnetic field, dB/dt, is a critical task for model development and for mitigation of geomagnetically induced current effects. While a current, community-accepted standard for dB/dt validation exists (Pulkkinen et al., 2013), it has several limitations that prevent more complete understanding of model capability. This work presents recommendations from the International Forum for Space Weather Capabilities Assessment Ground Magnetic Perturbation Working Team for creating a next-generation validation suite. Four recommendations are made to address the existing suite: greatly expand the number of ground observatories used, expand the number of events included in the suite from six to eight, generate metrics as a function of magnetic local time, and generate metrics as a function of activity type. For each of these, implementation details are explored. Limitations and future considerations are also discussed.
  •  
4.
  • Haaland, S., et al. (author)
  • Estimation of cold plasma outflow during geomagnetic storms
  • 2015
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:12, s. 10622-10639
  • Journal article (peer-reviewed)abstract
    • Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view