SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wikstrom Jakob D.) srt2:(2015-2019)"

Search: WFRF:(Wikstrom Jakob D.) > (2015-2019)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Herter, Eva K., et al. (author)
  • WAKMAR2, a Long Noncoding RNA Downregulated in Human Chronic Wounds, Modulates Keratinocyte Motility and Production of Inflammatory Chemokines
  • 2019
  • In: Journal of Investigative Dermatology. - : ELSEVIER SCIENCE INC. - 0022-202X .- 1523-1747. ; 139:6, s. 1373-1384
  • Journal article (peer-reviewed)abstract
    • Chronic wounds represent a major and growing health and economic burden worldwide. A better understanding of molecular mechanisms of normal as well as impaired wound healing is needed to develop effective treatment. Herein we studied the potential role of long noncoding RNA LOC100130476 in skin wound repair. LOC100130476 is an RNA polymerase IIeencoded polyadenylated transcript present in both cytoplasm and nucleus. We found that its expression was lower in wound-edge keratinocytes of human chronic wounds compared to normal wounds of healthy donors and intact skin. In cultured keratinocytes, LOC100130476 expression was induced by TGF-beta signaling. By reducing LOC100130476 expression with antisense oligos or activating its transcription with CRISPR/Cas9 Synergistic Activation Mediator system, we showed that LOC100130476 restricted the production of inflammatory chemokines by keratinocytes, while enhancing cell migration. In line with this, knockdown of LOC100130476 impaired re-epithelization of human ex vivo wounds. Based on these results, we named LOC100130476 wound and keratinocyte migration-associated long noncoding RNA 2 (WAKMAR2). Moreover, we identified a molecular network that may mediate the biological function of WAKMAR2 in keratinocytes using microarray. In summary, our data suggest that WAKMAR2 is an important regulator of skin wound healing and its deficiency may contribute to the pathogenesis of chronic wounds.
  •  
2.
  • Leong, Ivone U. S., et al. (author)
  • Novel mutations in Darier disease and association to self-reported disease severity
  • 2017
  • In: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 12:10
  • Journal article (peer-reviewed)abstract
    • Darier disease is a rare and severe autosomal dominant skin disease characterised by malodorous keratotic papules in seborrheic areas of the skin. Darier disease affects up to 1 in 30 000 people and is caused by mutations in the ATP2A2 gene, which encodes to the sarco/endoplasmic reticulum calcium-ATPase isoform 2 that pumps calcium into the endoplasmic reticulum. Although many ATP2A2 variants have been described, it is not known if genotype correlates with phenotype, which could be important for prognosis and treatment. This is the first study to use whole exome sequencing to screen the ATP2A2 gene in a cohort of 28 clinically diagnosed Darier disease patients. Twenty-one different disease causing variants were identified and 15 of these were novel. Sixteen of the 21 variants were predicted to be pathogenic using in silico prediction programs. There were seven missense, four intronic/splice-sites, three frameshifts, two in-frame deletions, four nonsense and one synonymous mutations. This study also found ten patients who harbour more than one ATP2A2 variant. The phenotype of the patient cohort was assessed by photography and by patient questionnaires. The genotype-phenotype association was examined for all variants in relation to the patient's disease severity score, and no correlation could be established.
  •  
3.
  • Li, Dongqing, et al. (author)
  • Human skin long noncoding RNA WAKMAR1 regulates wound healing by enhancing keratinocyte migration
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:19, s. 9443-9452
  • Journal article (peer-reviewed)abstract
    • An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-beta signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed "wound and keratinocyte migration-associated lncRNA 1" (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view